【题目】设正三棱锥A﹣BCD(底面是正三角形,顶点在底面的射影为底面中心)的所有顶点都在球O的球面上,BC=2,E,F分别是AB,BC的中点,EF⊥DE,则球O的表面积为( )
A.![]()
B.6π
C.8π
D.12π
科目:高中数学 来源: 题型:
【题目】已知过点A(﹣4,0)的动直线l与抛物线C:x2=2py(p>0)相交于B、C两点.
(1)当l的斜率是
时,
,求抛物线C的方程;
(2)设BC的中垂线在y轴上的截距为b,求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥A﹣BCDE中,AB⊥平面BCDE,四边形BCDE为矩形,F为AC的中点,AB=BC=2,BE=
.![]()
(Ⅰ)证明:EF⊥BD;
(Ⅱ)在线段AE上是否存在一点G,使得二面角D﹣BG﹣E的大小为
?若存在,求
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在实数集R中,已知集合A={x|
≥0}和集合B={x||x﹣1|+|x+1|≥2},则A∩B=( )
A.{﹣2}∪[2,+∞)
B.(﹣∞,﹣2]∪[2,+∞)
C.[2,+∞)
D.{0}∪[2,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
为常数.
(
)若
,求
的取值范围.
(
)若对任意的
都有不等式
成立,求
的值.
(
)在(
)的条件下,若函数
的图像与
轴恰有三个相异的公共点,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , a1=1,an≠0,anan+1=4Sn﹣1.
(Ⅰ)求{an}的通项公式;
(Ⅱ)证明:
+
+…+
<2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(理科)已知函数f(x)=4x3+3tx2﹣6t2x+t﹣1,x∈R,t∈R.
(1)当t≠0时,求f(x)的单调区间;
(2)证明:对任意t∈(0,+∞),f(x)在区间(0,1)内均存在零点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com