精英家教网 > 高中数学 > 题目详情
10.直线$\sqrt{3}$x-y+a=0(a为常数)的倾斜角为(  )
A.30°B.60°C.150°D.120°

分析 由直线的倾斜角α与斜率k的关系,可以求出α的值.

解答 解:设直线$\sqrt{3}$x-y+a=0的倾斜角是α,
则直线的方程可化为y=$\sqrt{3}$x+a,
直线的斜率k=tanα=$\sqrt{3}$,
∵0°≤α<180°,
∴α=60°.
故选:B.

点评 本题考查了利用直线的斜率求倾斜角的问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.用反证法证明命题:“若a,b∈Z,ab能被5整除,则a,b中至少有一个能被5整除”,那么假设的内容是(  )
A.a,b都能被5整除B.a,b都不能被5整除
C.a,b有一个能被5整除D.a,b有一个不能被5整除

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若|$\frac{x}{x+1}$|>$\frac{x}{x+1}$则实数x的取值范围是(  )
A.(-1,0)B.[-1,0]C.(-∞,-1)∪(0,+∞)D.(-∞,-1]∪[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=$\frac{4}{x^2}$+3x(x>0)取得最小值时,x的值是(  )
A.$\frac{1}{3}\root{3}{36}$B.$\frac{2}{3}\root{3}{9}$C.$\frac{1}{3}\sqrt{36}$D.$\frac{2}{3}\sqrt{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知ξ是离散型随机变量,P(X=1)=$\frac{2}{3}$,P(X=a)=$\frac{1}{3}$且E(X)=$\frac{4}{3}$,则D(2X-1)等于$\frac{8}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知α,β是两个不同的平面,下列四个条件中能推出α∥β的是(  )
①存在一条直线m,m⊥α,m⊥β;
②存在一个平面γ,γ⊥α,γ⊥β;
③存在两条平行直线m,n,m?α,n?β,m∥β,n∥α;
④存在两条异面直线m,n,m?α,n?β,m∥β,n∥α.
A.①③B.②④C.①④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.甲、乙两台自动车床生产同种标准件,ξ表示甲机床生产1000件产品中的次品数,η表示乙机床生产1000件产品中的次品数,经过一段时间的测试,ξ与η的分布列分别为:
ζ0123
P0.70.10.10.1
η0123
p0.50.30.20
据此判定(  )
A.甲比乙质量好B.乙比甲质量好C.甲与乙质量相同D.无法判定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.实验杯足球赛采用七人制淘汰赛规则,某场比赛中一班与二班在常规时间内战平,直接进入点球决胜环节,在点球决胜环节中,双方首先轮流罚点球三轮,罚中更多点球的球队获胜;若双方在三轮罚球中未分胜负,则需要进行一对一的点球决胜,即双方各派出一名队员罚点球,直至分出胜负;在前三轮罚球中,若某一时刻胜负已分,尚未出场的队员无需出场罚球(例如一班在先罚球的情况下,一班前两轮均命中,二班前两轮未能命中,则一班、二班的第三位同学无需出场),由于一班同学平时踢球热情较高,每位队员罚点球的命中率都能达到0.8,而二班队员的点球命中率只有0.5,比赛时通过抽签决定一班在每一轮都先罚球.
(1)定义事件A为“一班第三位同学没能出场罚球”,求事件A发生的概率;
(2)若两队在前三轮点球结束后打平,则进入一对一点球决胜,一对一点球决胜由没有在之前点球大战中出场过的队员主罚点球,若在一对一点球决胜的某一轮中,某队队员射入点球且另一队队员未能射入,则比赛结束;若两名队员均射入或者均射失点球,则进行下一轮比赛.若直至双方场上每名队员都已经出场罚球,则比赛亦结束,双方用过抽签决定胜负,以随机变量X记录双方进行一对一点球决胜的轮数,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表:
晚上白天合计
男婴243155
女婴82634
合计325789
你认为婴儿的性别与出生时间有关系的把握为(  )
A.80%B.90%C.95%D.99%

查看答案和解析>>

同步练习册答案