精英家教网 > 高中数学 > 题目详情
10、数列{an}是等差数列,若a10+a11<0,且a10•a11<0,它的前n项和Sn有最大值,那么当Sn取得最小正值时,n=(  )
分析:根据a10+a11<0,且a10a11<0,利用等差数列的性质得到等差数列{an}的前10项都为正数,从第11项开始变为负数,即可求出使Sn取最大值的n是10.
解答:解:由a10+a11=2a10+d<0,且d>0,得到a10>0;
又a10a11<0,得到a11<0,
得到等差数列{an}的前10项都为正数,从第11项开始变为负数,
所以使Sn取最大值的n是19.
故选C.
点评:本题考查学生灵活运用等差数列的性质化简求值,掌握等差数列的前n项和公式,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),数列{an}
满足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),数列{an}
满足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆市南开中学高三(上)期末数学试卷(文科)(解析版) 题型:解答题

已知满足:
(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

同步练习册答案