【题目】在四棱锥
中,
.
(1)设
与
相交于点
,
,且
平面
,求实数
的值;
(2)若
且
, 求二面角
的正弦值.
科目:高中数学 来源: 题型:
【题目】下列说法:
①函数
的单调增区间是
;
②若函数
定义域为
且满足
,则它的图象关于
轴对称;
③函数
的值域为
;
④函数
的图象和直线
的公共点个数是
,则
的值可能是
;
⑤若函数
在
上有零点,则实数
的取值范围是
.
其中正确的序号是_________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,棱长为
的正方形
中,点
,
分别是边
,
上的点,且
,将
,
沿
,
折起,使得
,
两点重合于
点上,设
与
交于
点,过点
作
于
点.
![]()
![]()
(1)求证:
平面
;
(2)求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“杨辉三角”是我国数学史上的一个伟大成就,是二项式系数在三角形中的一种几何排列.如图所示,去除所有为1的项,依此构成数列2,3,3,4,6,4,5,10,10,5,…,则此数列的前46项和为_____.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
的左、右焦点分别为F1,F2,离心率为
,P为椭圆C上的动点,且满足
,
,
面积的最大值为4.
(1)求动点Q的轨迹E的方程和椭圆C的方程.
(2)若点P不在x轴上,过点F2作OP的平行线交曲线C于M、N两个不同的点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东45°且与点A相距
海里的位置B,经过40分钟又测得该船已行驶到点A北偏东![]()
且与点A相距
海里的位置C.
(1)求该船的行驶速度(单位:海里/时);
(2)若该船不改变航行方向继续行驶判断它是否会进入警戒水域,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确的是( )
A. 幂函数的图象都经过
、
两点
B. 当
时,函数
的图象是一条直线
C. 如果两个幂函数的图象有三个公共点,那么这两个函数一定相同
D. 如果幂函数为偶函数,则图象一定经过点![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com