【题目】设函数f(x)=x(lnx﹣ax)(a∈R)在区间(0,2)上有两个极值点,则a的取值范围是( )
A.![]()
B.![]()
C.![]()
D.![]()
【答案】D
【解析】解:方法一:f(x)=x(lnx﹣ax),求导f′(x)=lnx﹣2ax+1,
由题意,关于x的方程a=
在区间(0,+∞)由两个不相等的实根,
令h(x)=
,h′(x)=﹣
,
当x∈(0,1)时,h(x)单调递增,当x∈(1,+∞)单调递减,
当x→+∞时,h(x)→0,
由图象可知:函数f(x)=x(lnx﹣ax),在(0,2)上由两个极值,
只需
<a<
,
故D.
![]()
方法二:f(x)=x(lnx﹣ax),求导f′(x)=lnx﹣2ax+1,
由题意,关于x的方程2ax=lnx+1在区间(0,2)由两个不相等的实根,
则y=2ax与y=lnx+1有两个交点,
由直线y=lnx+1,求导y′=
,
设切点(x0,y0),
=
,解得:x0=1,
∴切线的斜率k=1,
则2a=1,a=
,
则当x=2,则直线斜率k=
,
则a=
,
∴a的取值范围(
,
),
故选D.
![]()
【考点精析】根据题目的已知条件,利用函数的极值与导数的相关知识可以得到问题的答案,需要掌握求函数
的极值的方法是:(1)如果在
附近的左侧
,右侧
,那么
是极大值(2)如果在
附近的左侧
,右侧
,那么
是极小值.
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且Sn=2an﹣3n(n∈N+).
(1)求a1 , a2 , a3的值;
(2)设bn=an+3,证明数列{bn}为等比数列,并求通项公式an .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px(p>0)
(1)若直线x﹣y﹣2=0过抛物线C的焦点,求抛物线C的方程,并求出准线方程;
(2)设p=2,A,B是C上异于坐标原点O的两个动点,满足OA⊥OB,△ABO的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
﹣
=1(a>0,b>0)的左、右焦点分别为F1、F2 , 过点F1且垂直于x轴的直线与该双曲线的左支交于A、B两点,AF2、BF2分别交y轴于P、Q两点,若△PQF2的周长为12,则ab取得最大值时该双曲线的离心率为( )
A.![]()
B.![]()
C.2 ![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}中,a1=1,an+1=
(n∈N*).
(1)求证:{
+
}为等比数列,并求{an}的通项公式an;
(2)数列{bn}满足bn=(3n﹣1)
an , 求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
sin2x﹣cos2x,有下列四个结论:①f(x)的最小正周期为π;②f(x)在区间[﹣
,
]上是增函数;③f(x)的图象关于点(
,0)对称;④x=
是f(x)的一条对称轴.其中正确结论的个数为( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定
,设函数
满足:对于任意大于
的正整数
, ![]()
(1)设
,则其中一个函数
在
处的函数值为;
(2)设
,且当
时,
,则不同的函数
的个数为。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com