精英家教网 > 高中数学 > 题目详情
若f(x)为R上的奇函数,且在(0,+∞)内是增函数,又f(-3)=0,则(x-1)f(x)<0的解集为
(-3,1)∪(1,3)
(-3,1)∪(1,3)
分析:由(x-1)•f(x)<0对x-1>0或x-1<0进行讨论,把不等式(x-1)•f(x)<0转化为f(x)>0或f(x)<0的问题解决,根据f(x)是奇函数,且在(0,+∞)内是增函数,又f(-3)=0,把函数值不等式转化为自变量不等式,求得结果.
解答:解:∵f(x)是R上的奇函数,且在(0,+∞)内是增函数,
∴在(-∞,0)内f(x)也是增函数,
又∵f(-3)=0,
∴f(3)=0
∴当x∈(-∞,-3)∪(0,3)时,f(x)<0;
当x∈(-3,0)∪(3,+∞)时,f(x)>0;
∵(x-1)•f(x)<0
x-1<0
f(x)>0
x-1>0
f(x)<0

解可得-3<x<1或1<x<3
∴不等式的解集是(-3,1)∪(1,3)
故答案为:(-3,1)∪(1,3).
点评:本题主要考查函数的奇偶性和单调性解不等式,体现了分类讨论的思想方法,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x),当x<0时,f(x)=x2+2x-1
(1)若f(x)为R上的奇函数,则函数在R上的解析式为?
(2)若f(x)为R上的偶函数,则函数在R上的解析式为?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x),当x<0时,f(x)=x2+2x-1,若f(x)为R上的奇函数,则函数在R上的解析式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)为R上的奇函数,给出下列结论:
①f(x)+f(-x)=0;
②f(x)-f(-x)=2f(x);
③f(x)•f(-x)≤0;
f(x)
f(-x)
=-1.
其中不正确的结论有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中:
①“若x+y=0,则x2+y2=0”的逆命题
②若f(x)为R上的奇函数,x>0时f(x)=2x+1,则x<0时,f(x)=-2x+1
③若f(x)=x,x∈[1,4],则函数y=f(x)+2f(x2)的最大值是36.其中正确的命题是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数m(x)=log2(4x+1),n(x)=kx(k∈R).
(1)当x>0时,F(x)=m(x).若F(x)为R上的奇函数,求x<0时F(x)的表达式;
(2)若f(x)=m(x)+n(x)是偶函数,求k的值;
(3)对(2)中的函数f(x),设函数g(x)=log2(a?2x-
43
a),其中a>0.若函数f(x)与g(x)的图象有且只有一个公共点,求a的取值范围.

查看答案和解析>>

同步练习册答案