精英家教网 > 高中数学 > 题目详情
17.若函数f(x)=$\left\{\begin{array}{l}(a-2)x,x≥1\\{(\frac{1}{2})^x}-1,x<1\end{array}$是R上的单调递减函数,则实数a的取值范围是a≤$\frac{3}{2}$.

分析 根据分段函数单调性的性质建立不等式关系进行求解即可.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}(a-2)x,x≥1\\{(\frac{1}{2})^x}-1,x<1\end{array}$是R上的单调递减函数,
∴$\left\{\begin{array}{l}{a-2<0}\\{\frac{1}{2}-1≥a-2}\end{array}\right.$,即$\left\{\begin{array}{l}{a<2}\\{a≤\frac{3}{2}}\end{array}\right.$,
得a≤$\frac{3}{2}$,
即实数a的取值范围是a≤$\frac{3}{2}$,
故答案为:a≤$\frac{3}{2}$

点评 本题主要考查函数单调性的应用,根据分段函数单调性的性质建立不等式关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2lnx-x2
(1)求f(x)的单调区间.
(2)求f(x)在区间$[\frac{1}{e},e]$的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合M={x|x2-1≤0},N=|x∈Z|$\frac{1}{2}$<2x+1<4},则M∩N=(  )
A.{1}B.{-1,0}C.{-1,0,1}D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=4|$\overrightarrow{b}$|=2,$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为120°,则(2$\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知复数z=m(m-1)+(m2+2m-3)i;当实数m取什么值时,复数z是:
(1)实数
(2)虚数
(3)纯虚数
(4)零.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在极坐标系中,曲线C1的极坐标方程是ρ=$\frac{24}{4cosθ+3sinθ}$,以极点为原点O,极轴为x轴正半轴(两坐标系取相同的单位长度)的直角坐标系xOy中,曲线C2的参数方程为:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数).
(1)求曲线C1的直角坐标方程与曲线C2的普通方程;
(2)若用($\frac{x}{2\sqrt{2}},\frac{y}{2}$)代换曲线C2的普通方程中的(x,y)得到曲线C3的方程,若M,N分别是曲线C1和曲线C3上的动点,求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)若x,y满足|x-3y|<$\frac{1}{2}$,|x+2y|<$\frac{1}{6}$,求证:|x|<$\frac{3}{10}$;
(2)求证:x4+16y4≥2x3y+8xy3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|2x-a|+a,函数g(x)=|2x-1|.
(1)若当g(x)≤5时,恒有f(x)≤6,求实数a的最大值;
(2)若当x∈R时,f(x)+g(x)≥3恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.
(1)求a、b的值;
(2)若对于任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.

查看答案和解析>>

同步练习册答案