已知一条曲线
在
轴右侧,
上每一点到点
的距离减去它到
轴距离的差都是1.
(1)求曲线
的方程;
(2)设直线
交曲线
于
两点,线段
的中点为
,求直线
的一般式方程.
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为
.
(1)求椭圆C的方程;
(2)A,B为椭圆C上满足△AOB的面积为
的任意两点,E为线段AB的中点,射线OE交椭圆C于点P.设
=t
,求实数t的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
为椭圆![]()
的左右焦点,
是坐标原点,过
作垂直于
轴的直线
交椭圆于
,设
.
(1)证明:
成等比数列;
(2)若
的坐标为
,求椭圆
的方程;
(3)在(2)的椭圆中,过
的直线
与椭圆
交于
、
两点,若
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知定点
和定直线
,动点与定点
的距离等于点
到定直线
的距离,记动点
的轨迹为曲线
.
(1)求曲线
的方程.
(2)若以
为圆心的圆与曲线
交于
、
不同两点,且线段
是此圆的直径时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,过点A(-2,-1)椭圆C∶
=1(a>b>0)的左焦点为F,短轴端点为B1、B2,
=2b2.
(1)求a、b的值;
(2)过点A的直线l与椭圆C的另一交点为Q,与y轴的交点为R.过原点O且平行于l的直线与椭圆的一个交点为P.若AQ·AR=3OP2,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆
的离心率为
,
轴被曲线
截得的线段长等于
的短轴长。
与
轴的交点为
,过坐标原点
的直线
与
相交于点
,直线
分别与
相交于点
。![]()
(1)求
、
的方程;
(2)求证:
。
(3)记
的面积分别为
,若
,求
的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线x2-
=1.
(1)若一椭圆与该双曲线共焦点,且有一交点P(2,3),求椭圆方程.
(2)设(1)中椭圆的左、右顶点分别为A、B,右焦点为F,直线l为椭圆的右准线,N为l上的一动点,且在x轴上方,直线AN与椭圆交于点M.若AM=MN,求∠AMB的余弦值;
(3)设过A、F、N三点的圆与y轴交于P、Q两点,当线段PQ的中点为(0,9)时,求这个圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,点P(0,-1)是椭圆C1:
=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径.l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.![]()
(1)求椭圆C1的方程;
(2)求△ABD面积取最大值时直线l1的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直线l:y=x+
,圆O:x2+y2=5,椭圆E:
=1(a>b>0)的离心率e=
,直线l被圆O截得的弦长与椭圆的短轴长相等.
(1)求椭圆E的方程;
(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com