【题目】设函数f(x)=
sin
,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2 , 则m的取值范围是( )
A.(﹣∞,﹣6)∪(6,+∞)
B.(﹣∞,﹣4)∪(4,+∞)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣∞,﹣1)∪(1,+∞)
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sin(ωx﹣
)+2
sinωx,(ω>0)周期T∈[π,2π],x=π为函数f(x)图象的一条对称轴,
(1)求ω;
(2)求f(x)的单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
,过
的直线l与椭圆交于A,B两点,过Q(x0 , 0)(|x0|<a)的直线l'与椭圆交于M,N两点. ![]()
(1)当l的斜率是k时,用a,b,k表示出|PA||PB|的值;
(2)若直线l,l'的倾斜角互补,是否存在实数x0 , 使
为定值,若存在,求出该定值及x0 , 若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为( ) ![]()
A.(kπ﹣
,kπ+
,),k∈z
B.(2kπ﹣
,2kπ+
),k∈z
C.(k﹣
,k+
),k∈z
D.(
,2k+
),k∈z
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有次水下考古活动中,潜水员需潜入水深为30米的水底进行作业,其用氧量包含以下三个方面:①下潜时,平均速度为每分钟
米,每分钟的用氧量为
升;②水底作业需要10分钟,每分钟的用氧量为0.3升;③返回水面时,速度为每分钟
米,每分钟用氧量为0.2升;设潜水员在此次考古活动中的总用氧量为
升;
(1)将
表示为
的函数;
(2)若
,求总用氧量
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】社会在对全日制高中的教学水平进行评价时,常常将被清华北大录取的学生人数作为衡量的标准之一.重庆市教委调研了某中学近五年(2013年-2017年)高考被清华北大录取的学生人数,制作了如下所示的表格(设2013年为第一年).
年份(第 |
|
|
|
|
|
人数( |
|
|
|
|
|
(1)试求人数
关于年份
的回归直线方程
;
(2)在满足(1)的前提之下,估计2018年该中学被清华北大录取的人数(精确到个位);
(3)教委准备在这五年的数据中任意选取两年作进一步研究,求被选取的两年恰好不相邻的概率.
参考公式:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】a,b为正数,给出下列命题:
①若a2﹣b2=1,则a﹣b<1;
②若
﹣
=1,则a﹣b<1;
③ea﹣eb=1,则a﹣b<1;
④若lna﹣lnb=1,则a﹣b<1.
期中真命题的有 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期为π,图象的一个对称中心为(
,0),将函数f(x)图象上的所有点的横坐标伸长为原来的2倍(纵坐标不变),再将所得图象向右平移0.5π个单位长度后得到函数g(x)的图象;
(1)求函数f(x)与g(x)的解析式;
(2)当a≥1,求实数a与正整数n,使F(x)=f(x)+ag(x)在(0,nπ)恰有2019个零点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com