【题目】设数列
共有
项,记该数列前
项
中的最大项为
,该数列后
项
中的最小项为
,
.
(1)若数列
的通项公式为
,求数列
的通项公式;
(2)若数列
满足
,
,求数列
的通项公式;
(3)试构造一个数列
,满足
,其中
是公差不为零的等差数列,
是等比数列,使得对于任意给定的正整数
,数列
都是单调递增的,并说明理由.
【答案】(1)
,
;(2)
,
;(3)![]()
【解析】
试题(1)由题意得:因为
单调递增,所以
,
,所以
,
.本小题目的引导阅读题意,关键在于确定数列单调性(2)本题是逆问题,关键仍是确定数列单调性:因为
,所以
,可得
即
,又因为
,所以
单调递增,则
,
,所以
,可得
是公差为2的等差数列,
(3)由上面两小题可知,构造数列为单调递增数列:等差数列
的公差
为正数,等比数列
的首项
为负,公比
,若等比数列
的首项
为正,公比
,由(1)知不满足数列
是单调递增的
试题解析:(1)因为
单调递增,所以
,
,
所以
,
.
(2)根据题意可知,
,
,因为
,所以![]()
可得
即
,又因为
,所以
单调递增,
则
,
,所以
,即
,
,
所以
是公差为2的等差数列,
,
.
(3)构造
,其中
,
.
下证数列
满足题意.
证明:因为
,所以数列
单调递增,
所以
,
,
所以
,
,
因为
,
所以数列
单调递增,满足题意.
(说明:等差数列
的首项
任意,公差
为正数,同时等比数列
的首项
为负,公比
,这样构造的数列
都满足题意.)
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)求函数
的定义域D,并判断
的奇偶性;
(2)如果当
时,
的值域是
,求a的值;
(3)对任意的m,
,是否存在
,使得
,若存在,求出t,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“团购”已经渗透到我们每个人的生活,这离不开快递行业的发展,下表是2013-2017年全国快递业务量(x亿件:精确到0.1)及其增长速度(y%)的数据
![]()
(1)试计算2012年的快递业务量;
(2)分别将2013年,2014年,…,2017年记成年的序号t:1,2,3,4,5;现已知y与t具有线性相关关系,试建立y关于t的回归直线方程
;
(3)根据(2)问中所建立的回归直线方程,估算2019年的快递业务量
附:回归直线的斜率和截距地最小二乘法估计公式分别为:
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查一款手机的使用时间,研究人员对该款手机进行了相应的测试,将得到的数据统计如下图所示:
![]()
并对不同年龄层的市民对这款手机的购买意愿作出调查,得到的数据如下表所示:
愿意购买该款手机 | 不愿意购买该款手机 | 总计 | |
40岁以下 | 600 | ||
40岁以上 | 800 | 1000 | |
总计 | 1200 |
(1)根据图中的数据,试估计该款手机的平均使用时间;
(2)请将表格中的数据补充完整,并根据表中数据,判断是否有99.9%的把握认为“愿意购买该款手机”与“市民的年龄”有关.
参考公式:
,其中
.
参考数据:
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高三年级某班50名学生期中考试数学成绩的频率分布直方图如图所示,成绩分组区间为:![]()
![]()
![]()
![]()
![]()
![]()
.其中a,b,c成等差数列且
.物理成绩统计如表.(说明:数学满分150分,物理满分100分)
![]()
分组 |
|
|
|
|
|
频数 | 6 | 9 | 20 | 10 | 5 |
(1)根据频率分布直方图,请估计数学成绩的平均分;
(2)根据物理成绩统计表,请估计物理成绩的中位数;
(3)若数学成绩不低于140分的为“优”,物理成绩不低于90分的为“优”,已知本班中至少有一个“优”同学总数为6人,从此6人中随机抽取3人,记X为抽到两个“优”的学生人数,求X的分布列和期望值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
=1(a>b>0),点A、B分别是椭圆C的左顶点和上顶点,直线AB与圆G:x2+y2=
(c是椭圆的半焦距)相离,P是直线AB上一动点,过点P作圆G的两切线,切点分别为M、N.
![]()
(1)若椭圆C经过两点
、
,求椭圆C的方程;
(2)当c为定值时,求证:直线MN经过一定点E,并求
·
的值(O是坐标原点);
(3)若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围..
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点,
轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线
的极坐标方程为
,曲线
的极坐标方程为
,![]()
(l)设
为参数,若
,求直线
的参数方程;
(2)已知直线
与曲线
交于
,
设
,且
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,AB=4,AD=2,E是CD的中点,将△ADE沿AE折起,得到如图2所示的四棱锥D1—ABCE,其中平面D1AE⊥平面ABCE.
![]()
(1)证明:BE⊥平面D1AE;
(2)设F为CD1的中点,在线段AB上是否存在一点M,使得MF∥平面D1AE,若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com