(本小题满分12分)(注意:在试题卷上作答无效)
![]()
在四棱锥
中,侧面![]()
底面
,
,底面
是直角梯形,
,
,
,
.
(Ⅰ)求证:
平面
;
(Ⅱ)设
为侧棱
上一点,
,
试确定
的值,使得二面角
为
.
解法一:
(Ⅰ)平面![]()
底面
,
,所以
平面
,………1分
所以
, .……2分
如图,以
为原点建立空间直角坐标系
.
则
………3分
,
,
所以
,
,……………4分
又由
平面
,可得
,所以
平面
.……………6分
(Ⅱ)平面
的法向量为
,…………………………………………7分
,
,![]()
所以
, ………………………………………………………………8分
设平面
的法向量为
,
,
,
由
,
,得
所以,
,………………………………………………….……9分
所以
,………………………………………………………….…10分
所以
,……………………...……11分
注意到
,得
.
…………………………….………………12分
法二:(Ⅰ)∵面PCD⊥底面ABCD,面PCD∩底面ABCD=CD,PD
面PCD,且PD⊥CD
∴PD⊥面ABCD,………1分 又BC
面ABCD,∴BC⊥PD ①…. .…..……2分
取CD中点E,连结BE,则BE⊥CD,且BE=1
在Rt△ABD中,
,在Rt△BCE中,BC=
. .……………………...……4分
∵
, ∴BC⊥BD
②………………...……5分
由①、②且PD∩BD=D
∴BC⊥面PBD. ……….………………………………………….…...……6分
(Ⅱ)过Q作QF//BC交PB于F,过F作FG⊥BD于G,连结 GQ.
∵BC⊥面PBD,QF//BC
∴QF⊥面PBD,∴FG为QG在面PBD上的射影,
又∵BD⊥FG ∴BD⊥QG
∴∠FGQ为二面角Q-BD-P的平面角;由题意,∠FGQ=45°. …………….…...……8分
设PQ=x,易知![]()
∵FQ//BC,∴![]()
![]()
![]()
![]()
∵FG//PD∴![]()
………………..…...……10分
在Rt△FGQ中,∠FGQ=45°
∴FQ=FG,即![]()
∴
……..….........……11分
∵
∴
∴
……..…............……12分
【解析】略
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com