精英家教网 > 高中数学 > 题目详情

已知圆,直线过定点.

(1)求圆心的坐标和圆的半径

(2)若与圆C相切,求的方程;

(3)若与圆C相交于P,Q两点,求三角形面积的最大值,并求此时的直线方程.

 

【答案】

(1)圆心,半径(2)(3)

【解析】

试题分析:(1)将圆的一般方程化为标准方程,得

∴圆心,半径.                  2分

(2)①若直线的斜率不存在,则直线,符合题意.       3分 

②若直线斜率存在,设直线,即.

与圆相切.

∴圆心到已知直线的距离等于半径2,即   4分

解得 .                        5分

∴综上,所求直线方程为.         6分

(3)直线与圆相交,斜率必定存在,设直线方程为.

则圆心到直线l的距离                7分

又∵面积  9分

∴当时,.                     10分

,解得              11分

∴直线方程为.            12分

考点:圆的方程与直线与圆相切相交的位置关系

点评:过圆外一点的圆的切线有两条,当用点斜式求出的切线只有一条时,另一条切线斜率不存在;当直线与圆相交时,圆心到直线的距离,弦长的一半及圆的半径构成直角三角形,此三角形在求解直线与圆相交时经常用到

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆,直线过定点A(1,0).

(1)若与圆相切,求的方程;

(2)若与圆相交于P,Q两点,线段PQ的中点为M,又的交点为N,判断是否为定值,若是,则求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年湖南省上学期高二学考模拟试题七 题型:解答题

已知圆,直线过定点A(1,0),若与圆相切,求的方程。

 

查看答案和解析>>

科目:高中数学 来源:2013届江苏省淮安七校高二上学期期中考试理科数学 题型:解答题

.已知圆,直线过定点 A (1,0).

   (1)若与圆C相切,求的方程;

   (2)若的倾斜角为与圆C相交于PQ两点,求线段PQ的中点M的坐标;

   (3)若与圆C相交于PQ两点,求△CPQ面积的最大值

 

查看答案和解析>>

科目:高中数学 来源:2014届吉林省吉林市高一上学期期末数学试卷 题型:解答题

已知圆,直线过定点A(1,0).

(Ⅰ)若与圆相切,求的方程;

(Ⅱ)若与圆相交于P,Q两点,线段PQ的中点为M,又的交点为N,求证:为定值.

 

查看答案和解析>>

同步练习册答案