【题目】如图是一个由正四棱锥
和正四棱柱
构成的组合体,正四棱锥的侧棱长为6,
为正四棱锥高的4倍.当该组合体的体积最大时,点
到正四棱柱
外接球表面的最小距离是( )
![]()
A.
B.
C.
D.![]()
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,平面PAC⊥平面ABCD,且有AB∥DC,AC=CD=DA
AB.
![]()
(1)证明:BC⊥PA;
(2)若PA=PC=AC,求平面PAD与平面PBC所成的锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率
,
是椭圆
上一点.
(1)求椭圆
的方程;
(2)若直线
的斜率为
,且直线
交椭圆
于
、
两点,点
关于原点的对称点为
,点
是椭圆
上一点,判断直线
与
的斜率之和是否为定值,如果是,请求出此定值,如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
,
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)若
,求
的极坐标方程;
(2)若
与
恰有4个公共点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是一个由正四棱锥
和正四棱柱
构成的组合体,正四棱锥的侧棱长为6,
为正四棱锥高的4倍.当该组合体的体积最大时,点
到正四棱柱
外接球表面的最小距离是( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知圆柱内有一个三棱锥
,
为圆柱的一条母线,
,
为下底面圆
的直径,
.
(Ⅰ)在圆柱的上底面圆内是否存在一点
,使得
平面
?证明你的结论.
(Ⅱ)设点
为棱
的中点,
,求四棱锥
体积的最大值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知圆锥曲线
的参数方程为
(
为参数).
(1)以原点为极点,
轴正半轴为极轴建立极坐标系,求圆锥曲线
的极坐标方程;
(2)若直线l过曲线
的焦点且倾斜角为60°,求直线l被圆锥曲线
所截得的线段的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】瑞士数学家、物理学家欧拉发现任一凸多面体(即多面体内任意两点的连线都被完全包含在该多面体中,直观上讲是指没有凹陷或孔洞的多面体)的顶点数V.棱数E及面数F满足等式
,这个等式称为欧拉多面体公式,被认为是数学领域最漂亮、简洁的公式之一,现实生活中存在很多奇妙的几何体,现代足球的外观即取自一种不完全正多面体,它是由m块黑色正五边形面料和
块白色正六边形面料构成的.则
( )
![]()
A.20B.18C.14D.12
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com