【题目】设点
是边长为2的正三角形
的三边上的动点,则
的取值范围为______
【答案】![]()
【解析】
以
中点为坐标原点,建立平面直角坐标,写出各个点的坐标,分别讨论点
在
上.写出
点坐标,由平面向量的坐标表示分别表示出
,结合平面向量数量积的坐标运算求得
,再根据二次函数的性质即可求得取值范围.
根据题意,以
中点为坐标原点,建立如图所示的平面直角坐标:
![]()
正三角形
的边长为2,则
,点
是
三边上的动点,
,当
在线段
上时,设
,
则![]()
所![]()
![]()
![]()
![]()
所以当
时取得最小值为
;当
时取得最大值为2.
,当
在线段
上时,
直线
的方程为
,
设
,
则
,
所![]()
![]()
![]()
![]()
所以当
时取得最小值为0;当
或
时取得最大值为2.
,当
在线段
上时,
直线
的方程为
,
设
,
则
,
所
,
,
,
![]()
,
所以当
时取得最小值为
;当
时取得最大值为2.
综上可知,
的取值范围为
,
故答案为:
.
科目:高中数学 来源: 题型:
【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=
若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。
(Ⅰ)求k的值及f(x)的表达式。
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
的焦点是椭圆
:
(
)的顶点,且椭圆与双曲线的离心率互为倒数.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设动点
,
在椭圆
上,且
,记直线
在
轴上的截距为
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数
,若不等式
的解集为(1,4),且方程f(x)=x有两个相等的实数根。
(1)求f(x)的解析式;
(2)若不等式f(x)>mx在
上恒成立,求实数m的取值范围;
(3)解不等式![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
(
为自然对数的底)。
(Ⅰ)求函数
的单调区间;
(Ⅱ)若存在均属于区间
的
,
,且
,使
,证明:
;
(Ⅲ)对于函数
与
定义域内的任意实数
,若存在常数
,
,使得
和
都成立,则称直线
为函数
与
的分界线。试探究当
时,函数
与
是否存在“分界线”?若存在,请给予证明,并求出
,
的值;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题10分) 从3名男生和
名女生中任选2人参加比赛。
①求所选2人都是男生的概率;
②求所选2人恰有1名女生的概率;
③求所选2人中至少有1名女生的概率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了
年下半年该市
名农民工(其中技术工、非技术工各
名)的月工资,得到这
名农民工月工资的中位数为
百元(假设这
名农民工的月工资均在
(百元)内)且月工资收入在
(百元)内的人数为
,并根据调查结果画出如图所示的频率分布直方图:
![]()
(Ⅰ)求
,
的值;
(Ⅱ)已知这
名农民工中月工资高于平均数的技术工有
名,非技术工有
名,则能否在犯错误的概率不超过
的前提下认为是不是技术工与月工资是否高于平均数有关系?
参考公式及数据:
,其中
.
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com