【题目】已知
的两个顶点
的坐标分别为
,
,且
所在直线的斜率之积等于
,记顶点
的轨迹为
.
(Ⅰ)求顶点
的轨迹
的方程;
(Ⅱ)若直线
与曲线
交于
两点,点
在曲线
上,且
为
的重心(
为坐标原点),求证:
的面积为定值,并求出该定值.
科目:高中数学 来源: 题型:
【题目】双曲线E:
(
,
)的左、右焦点分别为
,
,已知点
为抛物线C:
的焦点,且到双曲线E的一条渐近线的距离为
,又点P为双曲线E上一点,满足
.则
(1)双曲线的标准方程为______;
(2)
的内切圆半径与外接圆半径之比为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱
中,
,
,
,
为棱
上的动点.
![]()
(1)若
为
的中点,求证:
平面
;
(2)若平面
平面ABC,且
是否存在点
,使二面角
的平面角的余弦值为
?若存在,求出
的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:极坐标与参数方程]
在直角坐标系
中,曲线
的参数方程为
(
是参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的极坐标方程和曲线
的直角坐标方程;
(2)若射线
与曲线
交于
,
两点,与曲线
交于
,
两点,求
取最大值时
的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校为增加应届毕业生就业机会,每年根据应届毕业生的综合素质和学业成绩对学生进行综合评估,已知某年度参与评估的毕业生共有2000名.其评估成绩
近似的服从正态分布
.现随机抽取了100名毕业生的评估成绩作为样本,并把样本数据进行了分组,绘制了如下频率分布直方图:
![]()
(1)求样本平均数
和样本方差
(同一组中的数据用该组区间的中点值作代表);
(2)若学校规定评估成绩超过82.7分的毕业生可参加
三家公司的面试.
用样本平均数
作为的估计值
,用样本标准差
作为
的估计值
.请利用估计值判断这2000名毕业生中,能够参加三家公司面试的人数;
附:
若随机变量
,则
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设常数
,函数![]()
(1)当
时,判断
在
上单调性,并加以证明;
(2)当
时,研究
的奇偶性,并说明理由;
(3)当
时,若存在区间
使得
在
上的值域为
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
、
、
,对于给定的正整数
,记
,![]()
.若对任意的正整数
满足:
,且
是等差数列,则称数列
为“
”数列.
(1)若数列
的前
项和为
,证明:
为
数列;
(2)若数列
为
数列,且
,求数列
的通项公式;
(3)若数列
为
数列,证明:
是等差数列 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com