【题目】在△ABC中,角A,B,C的对边分别是a、b、c,已知
(Ⅰ)求角A的大小;
(Ⅱ)若b=3,△ABC的面积为
,求a的值.
【答案】(Ⅰ)
;(Ⅱ)
【解析】试题分析:(Ⅰ)利用向量平行,列出方程,通过两角和与差的三角函数,化简求解角A的大小;(Ⅱ)利用三角形的面积,求出c,然后利用余弦定理求解a即可.
试题解析:解:(Ⅰ)∵
,∴(2c﹣b)cosA﹣acosB=0,
∴cosA(2sinC﹣sinB)﹣sinAcosB=0,
即2cosAsinC﹣cosAsinB﹣sinAcosB=0,
∴2cosAsinC=cosAsinB+sinAcosB,
∴2cosAsinC=sin(A+B),
即2cosAsinC=sinC,
∵sinC≠0∴2cosA=1,即
又0<A<π∴
,
(Ⅱ)∵b=3,由(Ⅰ)知∴
,
,
∴c=4,由余弦定理有a2=b2+c2﹣2bccosA=
,
∴
.
科目:高中数学 来源: 题型:
【题目】已知点A(0,﹣2),椭圆E:
=1(a>b>0)的离心率为
,F是椭圆的焦点,直线AF的斜率为
,O为坐标原点.
(Ⅰ)求E的方程;
(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
、
,其中,
,数列
满足
,
,数列
满足
.
(1)求数列
、
的通项公式;
(2)是否存在自然数
,使得对于任意
有
恒成立?若存在,求出
的最小值;
(3)若数列
满足
,求数列
的前
项和
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1}.
(1)当m=3时,求集合A∩B,A∪B;
(2)若BA,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}满足a4=5,a2+a8=14,数列{bn}满足b1=1,bn+1=2
bn .
(1)求数列{an}和{bn}的通项公式;
(2)求数列{
}的前n项和;
(3)若cn=an(
)
,求数列{cn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,且过点
.
(Ⅰ)求椭圆
的方程.
(Ⅱ)若
,
是椭圆
上两个不同的动点,且使
的角平分线垂直于
轴,试判断直线
的斜率是否为定值?若是,求出该值;若不是,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com