【题目】已知函数
.
(1)设
是函数
的极值点,求
的值,并求
的单调区间;
(2)若对任意
,
恒成立,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】唐代诗人李欣的是
古从军行
开头两句说“百日登山望烽火,黄昏饮马傍交河”诗中隐含着一个有缺的数学故事“将军饮马”的问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为
,若将军从
出发,河岸线所在直线方程
,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校需要从甲、乙两名学生中选一人参加数学竞赛,抽取了近期两人
次数学考试的成绩,统计结果如下表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
甲的成绩(分) |
|
|
|
|
|
乙的成绩(分) |
|
|
|
|
|
(1)若从甲、乙两人中选出一人参加数学竞赛,你认为选谁合适?请说明理由.
(2)若数学竞赛分初赛和复赛,在初赛中有两种答题方案:
方案一:每人从
道备选题中任意抽出
道,若答对,则可参加复赛,否则被淘汰.
方案二:每人从
道备选题中任意抽出
道,若至少答对其中
道,则可参加复赛,否则被润汰.
已知学生甲、乙都只会
道备选题中的
道,那么你推荐的选手选择哪种答题方条进人复赛的可能性更大?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体
中,点
是底面
的中心,
是线段
的上一点。
![]()
(1)若
为
的中点,求直线
与平面
所成角的正弦值;
(2)能否存在点
使得平面
平面
,若能,请指出点
的位置关系,并加以证明;若不能,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确命题的序号是( )
①函数f(x)在定义域R内可导,“f′(1)=0”是“函数f(x)在x=1处取极值”的充分不必要条件;
②函数f(x)=x3
ax在[1,2]上单调递增,则a≥﹣4
③在一次射箭比赛中,甲、乙两名射箭手各射箭一次.设命题p:“甲射中十环”,命题q:“乙射中十环”,则命题“至少有一名射箭手没有射中十环”可表示为(¬p)∨(¬q);
④若椭圆
左、右焦点分别为F1,F2,垂直于x轴的直线交椭圆于A,B两点,当直线过右焦点时,△ABF1的周长取最大值
A.①③④B.②③④C.②③D.①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下四个命题:
①“若
,则
”的逆否命题为真命题
②“
”是“函数
在区间
上为增函数”的充分不必要条件
③若
为假命题,则
,
均为假命题
④对于命题
:
,
,则
为:
,![]()
其中真命题的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为培养学生的阅读习惯,某校开展了为期一年的“弘扬传统文化,阅读经典名著”活动. 活动后,为了解阅读情况,学校统计了甲、乙两组各10名学生的阅读量(单位:本),统计结果用茎叶图记录如下,乙组记录中有一个数据模糊,无法确认,在图中以a表示.
(Ⅰ)若甲组阅读量的平均值大于乙组阅读量的平均值, 求图中a的所有可能取值;
(Ⅱ)将甲、乙两组中阅读量超过15本的学生称为“阅读达人”. 设
,现从所有“阅读达人”里任取3人,求其中乙组的人数X的分布列和数学期望.
(Ⅲ)记甲组阅读量的方差为
. 在甲组中增加一名学生A得到新的甲组,若A的阅读量为10,则记新甲组阅读量的方差为
;若A的阅读量为20,则记新甲组阅读量的方差为
,试比较
,
,
的大小.(结论不要求证明)
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com