【题目】如图在四棱锥
中,
是边长为2的等边三角形,
,Q为四边形
的外接圆的圆心,
平面
,M在棱
上,且
.
![]()
(1)证明:
平面
.
(2)若
与平面
所成角为60°,求
与平面
所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】今年4月23日我市正式宣布实施“3+1+2”的高考新方案,“3”是指必考的语文、数学、外语三门学科,“1”是指在物理和历史中必选一科,“2”是指在化学、生物、政治、地理四科中任选两科.为了解我校高一学生在物理和历史中的选科意愿情况,进行了一次模拟选科. 已知我校高一参与物理和历史选科的有1800名学生,其中男生1000人,女生800人. 按分层抽样的方法从中抽取了36个样本,统计知其中有17个男生选物理,6个女生选历史.
(I)根据所抽取的样本数据,填写答题卷中的列联表. 并根据
统计量判断能否有
的把握认为选择物理还是历史与性别有关?
(II)在样本里选历史的人中任选4人,记选出4人中男生有
人,女生有
人,求随机变量
的分布列和数学期望.(
的计算公式见下)
,临界值表:
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
的参数方程为
(
为参数),以直角坐标系原点为极点,以
轴正半轴为极轴并取相同的单位长度建立极坐标系.
(1)求曲线
的极坐标方程,并说明其表示什么轨迹;
(2)若直线
的极坐标方程为
,求曲线
上的点到直线
的最大距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着科技的发展,网购已经逐渐融入了人们的生活.在家里面不用出门就可以买到自己想要的东西,在网上付款即可,两三天就会送到自己的家门口,如果近的话当天买当天就能送到,或者第二天就能送到,所以网购是非常方便的购物方式.某公司组织统计了近五年来该公司网购的人数
(单位:人)与时间
(单位:年)的数据,列表如下:
| 1 | 2 | 3 | 4 | 5 |
| 24 | 27 | 41 | 64 | 79 |
(1)依据表中给出的数据,是否可用线性回归模型拟合
与
的关系,请计算相关系数
并加以说明(计算结果精确到0.01).(若
,则线性相关程度很高,可用线性回归模型拟合)
附:相关系数公式
,参考数据
.
(2)建立
关于
的回归方程,并预测第六年该公司的网购人数(计算结果精确到整数).
(参考公式:
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校因为寒假延期开学,根据教育部停课不停学的指示,该学校组织学生线上教学,高一年级在线上教学一个月后,为了了解线上教学的效果,在线上组织数学学科考试,随机抽取50名学生(满分150分,且抽取的学生成绩都在
内)的成绩并制成频率分布直方图如图所示.
![]()
(1)根据频率分布直方图,估计这50名同学的数学平均成绩;(同一组中的数据以该组区间的中点值作代表)
(2)用分层抽样的方法从成绩在
和
的同学中抽取6名,再在抽取的这6名同学中任选2名,求这两名同学的数学成绩在同一组中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线
.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线M的极坐标方程为
.
(1)求C的极坐标方程和曲线M的直角坐标方程;
(2)若M与C只有1个公共点P,求m的值与P的极坐标(
,
).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了提高利润,从2012年至2018年每年对生产环节的改进进行投资,投资金额与年利润增长的数据如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
投资金额 |
|
|
|
|
|
|
|
年利润增长 |
|
|
|
|
|
|
|
(1)请用最小二乘法求出
关于
的回归直线方程;如果2019年该公司计划对生产环节的改进的投资金额为
万元,估计该公司在该年的年利润增长为多少?(结果保留两位小数)
(2)现从2012年—2018年这
年中抽出三年进行调查,记
年利润增长
投资金额,设这三年中
(万元)的年份数为
,求随机变量
的分布列与期望.
参考公式:
.
参考数据:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
为实数,
.证明:
(1)把
写成无穷乘积有唯一的表达式
其中,
为正整数,满足
;
(2)
是有理数,当且仅当它的无穷乘积具有下列性质:存在
,对所有的
,满足![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com