精英家教网 > 高中数学 > 题目详情

【题目】如图在四棱锥中,是边长为2的等边三角形,Q为四边形的外接圆的圆心,平面M在棱上,且.

1)证明:平面.

2)若与平面所成角为60°,求与平面所成角的正弦值.

【答案】1)证明见解析;(2.

【解析】

(1) 连接,交于点O,连接,再根据三角形中的性质证明即可.

(2) 根据线面角的性质可得与平面所成角为,再以O为坐标原点的空间直角坐标系,利用空间向量求解与平面所成角的正弦值即可.

1)证明:如图,连接,交于点O,连接.

,∴,则

O的中点.

Q为四边形的外接圆的圆心,∴Q为等边的外接圆的圆心,

Q为等边的重心,则.

,∴.

平面平面,∴平面.

2)解:∵平面

与平面所成角为

.

建立如图所示的以O为坐标原点的空间直角坐标系

.

设平面的法向量为

,即

,得.

与平面所成角为,∵

与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】今年4月23日我市正式宣布实施“3+1+2”的高考新方案,“3”是指必考的语文、数学、外语三门学科,“1”是指在物理和历史中必选一科,“2”是指在化学、生物、政治、地理四科中任选两科.为了解我校高一学生在物理和历史中的选科意愿情况,进行了一次模拟选科. 已知我校高一参与物理和历史选科的有1800名学生,其中男生1000人,女生800人. 按分层抽样的方法从中抽取了36个样本,统计知其中有17个男生选物理,6个女生选历史.

(I)根据所抽取的样本数据,填写答题卷中的列联表. 并根据统计量判断能否有的把握认为选择物理还是历史与性别有关?

(II)在样本里选历史的人中任选4人,记选出4人中男生有人,女生有人,求随机变量 的分布列和数学期望.(的计算公式见下),临界值表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的参数方程为为参数),以直角坐标系原点为极点,以轴正半轴为极轴并取相同的单位长度建立极坐标系.

(1)求曲线的极坐标方程,并说明其表示什么轨迹;

(2)若直线的极坐标方程为,求曲线上的点到直线的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着科技的发展,网购已经逐渐融入了人们的生活.在家里面不用出门就可以买到自己想要的东西,在网上付款即可,两三天就会送到自己的家门口,如果近的话当天买当天就能送到,或者第二天就能送到,所以网购是非常方便的购物方式.某公司组织统计了近五年来该公司网购的人数(单位:人)与时间(单位:年)的数据,列表如下:

1

2

3

4

5

24

27

41

64

79

(1)依据表中给出的数据,是否可用线性回归模型拟合的关系,请计算相关系数并加以说明(计算结果精确到0.01).(若,则线性相关程度很高,可用线性回归模型拟合)

附:相关系数公式 ,参考数据.

(2)建立关于的回归方程,并预测第六年该公司的网购人数(计算结果精确到整数).

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校因为寒假延期开学,根据教育部停课不停学的指示,该学校组织学生线上教学,高一年级在线上教学一个月后,为了了解线上教学的效果,在线上组织数学学科考试,随机抽取50名学生(满分150分,且抽取的学生成绩都在内)的成绩并制成频率分布直方图如图所示.

1)根据频率分布直方图,估计这50名同学的数学平均成绩;(同一组中的数据以该组区间的中点值作代表)

2)用分层抽样的方法从成绩在的同学中抽取6名,再在抽取的这6名同学中任选2名,求这两名同学的数学成绩在同一组中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线M的极坐标方程为.

1)求C的极坐标方程和曲线M的直角坐标方程;

2)若MC只有1个公共点P,求m的值与P的极坐标().

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了提高利润,从2012年至2018年每年对生产环节的改进进行投资,投资金额与年利润增长的数据如下表:

年份

2012

2013

2014

2015

2016

2017

2018

投资金额(万元)

年利润增长(万元)

(1)请用最小二乘法求出关于的回归直线方程;如果2019年该公司计划对生产环节的改进的投资金额为万元,估计该公司在该年的年利润增长为多少?(结果保留两位小数)

(2)现从2012年—2018年这年中抽出三年进行调查,记年利润增长投资金额,设这三年中(万元)的年份数为,求随机变量的分布列与期望.

参考公式:.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实数,.证明:

(1)把写成无穷乘积有唯一的表达式其中,为正整数,满足

(2)是有理数,当且仅当它的无穷乘积具有下列性质:存在,对所有的,满足

查看答案和解析>>

同步练习册答案