科目:高中数学 来源: 题型:解答题
已知四棱锥P-ABCD,底面ABCD是
,边长为
的菱形,又
,且PD=CD,点M、N分别是棱AD、PC的中点.![]()
(1)证明:DN//平面PMB;
(2)证明:平面PMB
平面PAD.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,G、H分别为DC、BC的中点.![]()
(1)求证:平面FGH∥平面BDE;
(2)求证:平面ACF⊥平面BDE.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC.![]()
(1)求证:BE∥平面PDA;
(2)若N为线段PB的中点,求证:NE⊥平面PDB.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在多面体ABCDEF中,底面ABCD是梯形,且AD=DC=CB=
AB.直角梯形ACEF中,
,
是锐角,且平面ACEF⊥平面ABCD.![]()
(1)求证:
;
(2)若直线DE与平面ACEF所成的角的正切值是
,试求
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P ABCD中,侧面PAD⊥底面ABCD,侧棱
,
,底面
为直角梯形,其中BC∥AD, AB⊥AD,
,O为AD中点.![]()
(1)求直线
与平面
所成角的余弦值;
(2)求
点到平面
的距离;
(3)线段
上是否存在一点
,使得二面角
的余弦值为
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在长方体ABCDA1B1C1D1的A1C1面上有一点P(如图所示,其中P点不在对角线B1D1)上.
(1)过P点在空间作一直线l,使l∥直线BD,应该如何作图?并说明理由;
(2)过P点在平面A1C1内作一直线m,使m与直线BD成α角,其中α∈
,这样的直线有几条,应该如何作图?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com