精英家教网 > 高中数学 > 题目详情
精英家教网如图,分别以矩形ABCD的长为2宽为1,若以1为半径,顶点或边的中点为圆心画圆弧,重叠部分如图中阴影区域,若向该矩形内随机投一点,则该点落在空白区域的概率为(  )
A、
4-π
2
B、
π-2
2
C、
4-π
4
D、
π-2
4
分析:由题意知本题是一个几何概型,试验发生包含的所有事件是矩形面积S=1×2,而满足条件的空白区域可以看作是由四部分组成,每一部分是由边长为1的正方形面积减去半径为1的四分之一圆的面积得到.
解答:解:由题意知本题是一个几何概型,
∵试验发生包含的所有事件是矩形面积S=1×2=2,
空白区域的面积是4(1-
1
4
π
)=4-π,
∴由几何概型公式得到P=
4-π
2

故选A.
点评:本题考查几何概型,且把几何概型同几何图形的面积结合起来,几何概型和古典概型是高中必修中学习的,高考时常以选择和填空出现,有时文科会考这种类型的解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网某矩形花园ABCD,AB=2,AD=
3
,H是AB的中点,在该花园中有一花圃其形状是以H为直角顶点的内接Rt△HEF,其中E、F分别落在线段BC和线段AD上如图.分别记∠BHE为θ,Rt△EHF的周长为l,Rt△EHF的面积为S
(1)试求S的取值范围;
(2)θ为何值时l的值为最小;并求l的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某地政府为科技兴市,欲在如图所示的矩形ABCD的非农业用地中规划出一个高科技工业园区(如图中阴影部分),形状为直角梯形QPRE(线段EQ和RP为两个底边),已知AB=2km,BC=6km,AE=BF=4km其中曲线段AF是以A为顶点、AD为对称轴的抛物线的一部分.分别以直线AB,AD为x轴和y轴建立平面直角坐标系.
(1)求曲线段AF所在抛物线的方程;
(2)设点P的横坐标为x,高科技工业园区的面积为S.试求S关于x的函数表达式,并求出工业园区面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某地政府为科技兴市,欲在如图所示的矩形ABCD的非农业用地中规划出一个高科技工业园区(如图中阴影部分),形状为直角梯形QPRE(线段EQ和RP为两个底边),已知AB=2km,BC=6km,AE=BF=4km其中曲线段AF是以A为顶点、AD为对称轴的抛物线的一部分.分别以直线AB,AD为x轴和y轴建立平面直角坐标系.
(1)求曲线段AF所在抛物线的方程;
(2)设点P的横坐标为x,高科技工业园区的面积为S.试求S关于x的函数表达式,并求出工业园区面积S的最大值.

查看答案和解析>>

科目:高中数学 来源:江苏期中题 题型:解答题

某地政府为科技兴市,欲在如图所示的矩形ABCD的非农业用地中规划出一个高科技工业园区(如图中阴影部分),形状为直角梯形QPRE(线段EQ和RP为两个底边),已知AB=2km,BC=6km,AE=BF=4km其中曲线段AF是以A为顶点、AD为对称轴的抛物线的一部分.分别以直线AB,AD为x轴和y轴建立平面直角坐标系.
(1)求曲线段AF所在抛物线的方程;
(2)设点P的横坐标为x,高科技工业园区的面积为S.试求S关于x的函数表达式,并求出工业园区面积S的最大值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省盐城中学高二(上)期中数学试卷(解析版) 题型:解答题

某地政府为科技兴市,欲在如图所示的矩形ABCD的非农业用地中规划出一个高科技工业园区(如图中阴影部分),形状为直角梯形QPRE(线段EQ和RP为两个底边),已知AB=2km,BC=6km,AE=BF=4km其中曲线段AF是以A为顶点、AD为对称轴的抛物线的一部分.分别以直线AB,AD为x轴和y轴建立平面直角坐标系.
(1)求曲线段AF所在抛物线的方程;
(2)设点P的横坐标为x,高科技工业园区的面积为S.试求S关于x的函数表达式,并求出工业园区面积S的最大值.

查看答案和解析>>

同步练习册答案