如图,三棱柱ABC-A
B
C
的侧面A
ACC
与底面ABC垂直,AB=BC=CA=4,且AA
⊥A
C,AA
=A
C.![]()
(Ⅰ)证明:AC⊥BA
;
(Ⅱ)求侧面A
ABB
与底面ABC所成二面角的余弦值.
(1)要证明线线垂直,通过线面垂直的性质定理来证明。
(2) 侧面A
ABB
与底面ABC所成的二面角为arccos![]()
解析试题分析:(Ⅰ)证明:取AC的中点O,连结OA
,OB,BA
,则
, 2分
. 4分
∴AC⊥面BOA
. 5分
∵BA![]()
面BOA
,∴AC⊥BA
. 6分
(Ⅱ)解法一:∵面A
ACC
⊥面ABC,A
O⊥AC,
∴A
O⊥面ABC. 7分
过点O作OH⊥AB于H,连结A
H,则A
H⊥AB,
∴∠A
HO为所求二面角的平面角. 9分
在等边△ABC中,OH=
,A
H=
. ∴cos∠A
HO=
=
. 11分
∴侧面A
ABB
与底面ABC所成的二面角为arccos
. 12分
解法二:以O为坐标原点,OB,OC,OA
所在直线分别为x轴,y轴,z轴建立空间直角坐标系, 7分![]()
则A(0,-2,0),B(2
,0,0),C(0,2,0),A
(0,0,2),
C
(0,4,2),设n=(x,y,z)是面A
ABB
的一个法向量,则n⊥
,n⊥
,
∵
=(0,2,2),
=(2
,2,0), 8分
∴
取x=1,得n=(1,-
,
). 9分
易知平面ABC的法向量为m=(0,0,1), 10分
所以cos<m,n>=
=
. 11分
∴ 侧面A
ABB
与底面ABC所成的二面角为arccos
. 12分
考点:二面角的平面角,线线垂直
点评:主要是考查了关于垂直证明,以及二面角的平面角的求解,属于基础题。可以运用代数法也可以运用几何性质来求解和证明。
科目:高中数学 来源: 题型:解答题
如图,
是以
为直径的半圆上异于点
的点,矩形
所在的平面垂直于该半圆所在平面,且![]()
![]()
(Ⅰ)求证:
;
(Ⅱ)设平面
与半圆弧的另一个交点为
,
①求证:
//
;
②若
,求三棱锥E-ADF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知几何体A—BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.
(1)求此几何体的体积V的大小;
(2)求异面直线DE与AB所成角的余弦值;
(3)试探究在DE上是否存在点Q,使得AQ
BQ并说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图(1),在等腰直角三角形
中,
,点
分别为线段
的中点,将
和
分别沿
折起,使二面角
和二面角
都成直二面角,如图(2)所示。![]()
![]()
(1)求证:
面
;
(2)求平面
与平面
所成的锐二面角的余弦值;
(3)求点
到平面
的距离。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,圆锥
中,
为底面圆的两条直径 ,AB交CD于O,且
,
,
为
的中点.![]()
(1)求证:
平面
;
(2)求圆锥
的表面积;求圆锥
的体积。
(3)求异面直线
与
所成角的正切值 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com