精英家教网 > 高中数学 > 题目详情
18.在(x2+2x+y)5的展开式中,x5y2的系数为60.

分析 把(x2+2x+y)5化简成二项式机构,利用通项公式可得答案.

解答 解:由(x2+2x+y)5化简为[x2+2x)+y],
由通项公式Tr+1=${C}_{5}^{r}{y}^{r}({x}^{2}+2x)^{5-r}$,要出现y2,∴r=2.
二项式(x2+2x)3展开式中出现x5
由通项公式Tk+1=${C}_{3}^{k}{x}^{2(3-k)}{2}^{k}{x}^{k}$,
∴2(3-k)+k=5,
可得:k=1.
∴x5y2的系数为${C}_{5}^{2}×2{×C}_{3}^{1}$=60.
故答案为:60.

点评 本题主要考查二项式定理对三项式的处理能力的应用,考查了二项式系数的性质,二项式展开式的通项公式,体现了转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知f(x)是二次函数,不等式f(x)<0的解集为(0,5),且f(x)在[-1,4]上的最大值是12.
(1)求f(x)的解析式;
(2)是否存在自然数m,使得方程$f(x)+\frac{37}{x}=0$在区间(m,m+1)内有且只有两个不等的实根?若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设z=$\frac{(1-4i)(1+i)+2+4i}{3+4i}$.
①求|z|;
②若$\frac{{|{\overline z}|+mi}}{1-i}=\sqrt{2}$i,m∈R,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知复数Z为纯虚数,若(z+2)2-8i也是纯虚数,则Z的虚部为(  )
A.2B.-2C.-2iD.2或-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知α是第三象限角,$f(α)=\frac{sin(π-α)cos(2π-α)tan(-α-π)}{tan(-α)sin(-π-α)}$
(1)化简f(α);
(2)若$cos(α-\frac{3π}{2})=\frac{1}{5}$,求f(α)的值;.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某程序框图如图所示,若输入的n=10,则输出结果为(  )
A.$\frac{1}{10}$B.$\frac{8}{9}$C.$\frac{9}{10}$D.$\frac{10}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知复数z满足(1+2i3)z=1+2i,则z的虚部是$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水x(单位:千克) 清洗该蔬菜1千克后,蔬菜上残留的农药y(单位:微克) 的统计表:
x12345
 y5854392910
(1)在下面的坐标系中,描出散点图,并判断变量x与y的相关性;
(2)若用解析式$\widehaty=c{x^2}+d$作为蔬菜农药残量$\widehaty$与用水量x的回归方程,令ω=x2,计算平均值$\overlineω$与$\overline y$,完成以下表格(填在答题卡中),求出$\widehaty$与x的回归方程.(c,d精确到0.1)
ω1491625
y5854392910
${ω_i}-\overlineω$-10-7-2514
${y_i}-\overline y$20161-28
(3)对于某种残留在蔬菜上的农药,当它的残留量低于20微克时对人体无害,为了放心食用该蔬菜,请
估计需要用多少千克的清水清洗一千克蔬菜?(精确到0.1,参考数据$\sqrt{5}≈2.236$)
(附:线性回归方程$\widehaty=bx+a$中系数计算公式分别为;$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$a=\overline y-b\overline x$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.椭圆的中心在坐标原点,焦点在x轴上,左右顶点分别为A1、A2,上下顶点分别为B1、B2,F2为右焦点,延长B2F2与A2B1交于点P,若∠B2PA2为钝角,则该椭圆离心率的取值范围是(  )
A.$({\frac{{\sqrt{5}-2}}{2},0})$B.$({0,\frac{{\sqrt{5}-2}}{2}})$C.$({0,\frac{{\sqrt{5}-1}}{2}})$D.$({\frac{{\sqrt{5}-1}}{2},1})$

查看答案和解析>>

同步练习册答案