【题目】若无穷数列
满足:
,对于
,都有
(其中
为常数),则称
具有性质“
”.
(Ⅰ)若
具有性质“
”,且
,
,
,求
;
(Ⅱ)若无穷数列
是等差数列,无穷数列
是公比为正数的等比数列,
,
,
,判断
是否具有性质“
”,并说明理由;
(Ⅲ)设
既具有性质“
”,又具有性质“
”,其中
,
,
互质,求证:
具有性质“
”.
【答案】(1)
,
(2)见解析(3见解析)
【解析】试题分析: (1)因为
具有性质“
”,所以
,
.再根据已知数据,求出
即可; (2)设等差数列
的公差为
,由
,
,故
. 设等比数列
的公比为
,由
,
,故
,所以
. 若
具有性质“
”,则
,
.又
,故
不具有性质“
”;(3) 因为
具有性质“
”,所以
,
.①
因为
具有性质“
”,所以
,
.②,化简整理得
,
,得证.
试题解析:解 :(Ⅰ)因为
具有性质“
”,所以
,
.
由
,得
,由
,得
.
因为
,所以
,即
.
(Ⅱ)
不具有性质“
”.
设等差数列
的公差为
,由
,
,
得
,所以
,故
.
设等比数列
的公比为
,由
,
,
得
,又
,所以
,故
,
所以
.
若
具有性质“
”,则
,
.
因为
,
,所以
,
故
不具有性质“
”.
(Ⅲ)因为
具有性质“
”,所以
,
.①
因为
具有性质“
”,所以
,
.②
因为
,
,
互质,
所以由①得
;由②,得
,
所以
,即
.
②-①,得
,
,
所以
,
,
所以
具有性质“
”.
科目:高中数学 来源: 题型:
【题目】计算与求解
(1)计算:2log32﹣log3
+log38﹣5
;
(2)已知a>0,a≠1,若loga(2x+1)<loga (4x﹣3),求x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】血药浓度(Plasma Concentration)是指药物吸收后在血浆内的总浓度. 药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示:
![]()
根据图中提供的信息,下列关于成人使用该药物的说法中,不正确的是
A. 首次服用该药物1单位约10分钟后,药物发挥治疗作用
B. 每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒
C. 每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用
D. 首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
![]()
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的几何体中,四边形
为等腰梯形,
∥
,
,
,四边形
为正方形,平面
平面
.
(Ⅰ)若点
是棱
的中点,求证:
∥平面
;
(Ⅱ)求直线
与平面
所成角的正弦值;
(Ⅲ)在线段
上是否存在点
,使平面
平面
?若存在,求
的值;若不存在,说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入,已知研发投入
(十万元)与利润
(百万元)之间有如下对应数据:
| 2 | 3 | 4 | 5 | 6 |
| 2 | 4 | 5 | 6 | 7 |
若由资料知
对
呈线性相关关系。试求:
(1)线性回归方程
;
(2)估计
时,利润是多少?
附:利用“最小二乘法”计算a,b的值时,可根据以下公式:
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设偶函数f(x)满足f(x)=x3﹣8(x≥0),则{x|f(x﹣2)>0}=( )
A.{x|x<﹣2或x>4}
B.{x|x<0或x>4}
C.{x|x<0或x>6}
D.{x|x<﹣2或x>2}
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com