【题目】如图1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,点E是BC边的中点,将△ABD沿BD折起,使平面ABD⊥平面BCD,连接AE,AC,DE,得到如图2所示的几何体.
![]()
若AD=1,二面角CABD的平面角的正切值为
,求二面角BADE的余弦值.
【答案】![]()
【解析】
根据已知可得
平面
,
,进而有AB⊥平面ADC,得出二面角CABD的平面角为∠CAD,求出
,以D为坐标原点,建立如图所示的空间直角坐标系,确定点
坐标,求出平面BAD的法向量坐标,利用平面BAD的一个法向量
=(0,1,0),由空间向量面面角公式,即可求解.
平面ABD⊥平面BCD,平面ABD
平面BCD
,
BD⊥DC,
平面
,
平面
,
平面
,
,
AB⊥平面ADC,
,
所以二面角CABD的平面角为∠CAD.
又DC⊥平面ABD,AD平面ABD,所以DC⊥AD.
依题意tan∠CAD=
.
因为AD=1,所以CD=
.
设AB=x(x>0),则BD=
.
依题意△ABD∽△DCB,所以
,
即
,解得x=
,
故AB=
,BD=
,BC=![]()
以D为坐标原点,射线DB,DC分别为x轴,y轴的正半轴,
建立如图所示的空间直角坐标系Dxyz,
则D(0,0,0),B(
,0,0),C(0,
,0),
![]()
所以
.
平面BAD的一个法向量
=(0,1,0).
设平面ADE的法向量为
=(x,y,z),
由
得,
![]()
令x=
,得y=-
,z=-
,
所以
为平面ADE的一个法向量.
所以
.![]()
由图可知二面角BADE的平面角为锐角,
所以二面角BADE的余弦值为
.
![]()
科目:高中数学 来源: 题型:
【题目】根据中国生态环境部公布的2017年、2018年长江流域水质情况监测数据,得到如下饼图:
![]()
则下列说法错误的是( )
A.2018年的水质情况好于2017年的水质情况
B.2018年与2017年相比较,Ⅰ、Ⅱ类水质的占比明显增加
C.2018年与2017年相比较,占比减小幅度最大的是Ⅳ类水质
D.2018年Ⅰ、Ⅱ类水质的占比超过![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班有甲乙两个物理科代表,从若干次物理考试中,随机抽取八次成绩的茎叶图(其中茎为成绩十位数字,叶为成绩的个位数字)如下:
![]()
(1)分别求甲、乙两个科代表成绩的中位数;
(2)分别求甲、乙两个科代表成绩的平均数,并说明哪个科代表的成绩更稳定;
(3)将频率视为概率,对乙科代表今后三次考试的成绩进行预测,记这三次成绩中不低于90分的次数为
,求
的分布列及均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】冬季历来是交通事故多发期,面临着货运高危运行、恶劣天气频发、包车客运监管漏洞和农村交通繁忙等四个方面的挑战.全国公安交管部门要认清形势、正视问题,针对近期事故暴露出来的问题,强薄羽、补短板、堵漏洞,进一步推动五大行动,巩固扩大五大行动成果,全力确保冬季交通安全形势稳定.据此,某网站推出了关于交通道路安全情况的调查,通过调查年龄在
的人群,数据表明,交通道路安全仍是百姓最为关心的热点,参与调查者中关注此类问题的约占80%.现从参与调查并关注交通道路安全的人群中随机选出100人,并将这100人按年龄分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.
![]()
(1)求这100人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);
(2)现在要从年龄较大的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取2人进行问卷调查,求第2组恰好抽到1人的概率;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱
中,
平面
,
,
,且
,
,
,
分别为棱
,
,
,
的中点.
![]()
(I)证明:直线
与
共面;
(Ⅱ)证明:平面
平面
;并试写出
到平面
的距离(不必写出计算过程).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AD∥BC,
ADC=
PAB=90°,BC=CD=
AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.
![]()
(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义域是
上的连续函数
图像的两个端点为
、
,
是图像
上任意一点,过点
作垂直于
轴的直线
交线段
于点
(点
与点
可以重合),我们称
的最大值为该函数的“曲径”,下列定义域是
上的函数中,曲径最小的是( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地实行垃圾分类后,政府决定为
三个小区建造一座垃圾处理站M,集中处理三个小区的湿垃圾.已知
在
的正西方向,
在
的北偏东
方向,
在
的北偏西
方向,且在
的北偏西
方向,小区
与
相距
与
相距
.
![]()
(1)求垃圾处理站
与小区
之间的距离;
(2)假设有大、小两种运输车,车在往返各小区、处理站之间都是直线行驶,一辆大车的行车费用为每公里
元,一辆小车的行车费用为每公里
元(其中
为满足
是
内的正整数) .现有两种运输湿垃圾的方案:
方案1:只用一辆大车运输,从
出发,依次经
再由
返回到
;
方案2:先用两辆小车分别从
运送到
,然后并各自返回到
,一辆大车从
直接到
再返回到
.试比较哪种方案更合算?请说明理由. 结果精确到小数点后两位
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com