【题目】已知椭圆
的离心率
,
为椭圆
的右焦点,
,
为椭圆的上、下顶点,且
的面积为
.
(1)求椭圆
的方程;
(2)动直线
与椭圆
交于
,
两点,证明:在第一象限内存在定点
,使得当直线
与直线
的斜率均存在时,其斜率之和是与
无关的常数,并求出所有满足条件的定点
的坐标.
科目:高中数学 来源: 题型:
【题目】以椭圆
的中心O为圆心,以
为半径的圆称为该椭圆的“伴随”.已知椭圆的离心率为
,且过点
.
(1)求椭圆C及其“伴随”的方程;
(2)过点
作“伴随”的切线l交椭圆C于A,B两点,记
为坐标原点)的面积为
,将
表示为m的函数,并求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
是
上一点.
(1)求椭圆
的方程;
(2)设
是
分别关于两坐标轴及坐标原点的对称点,平行于
的直线
交
于异于
的两点
.点
关于原点的对称点为
.证明:直线
与
轴围成的三角形是等腰三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知曲线
与曲线
,(
为参数).以坐标原点为极点,
轴的正半轴为极轴建立极坐标系.
(1)写出曲线
,
的极坐标方程;
(2)在极坐标系中,已知
与
,
的公共点分别为
,
,
,当
时,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年3月5日上午,李克强总理做政府工作报告时表示,将新能源汽车车辆购置税优惠政策再延长三年,自2018年1月1日至2020年12月31日,对购置的新能源汽车免征车辆购置税.新能源汽车销售的春天来了!从衡阳地区某品牌新能源汽车销售公司了解到,为了帮助品牌迅速占领市场,他们采取了保证公司正常运营的前提下实行薄利多销的营销策略(即销售单价随日销量
(台)变化而有所变化),该公司的日盈利
(万元),经过一段时间的销售得到
,
的一组统计数据如下表:
日销量 | 1 | 2 | 3 | 4 | 5 |
日盈利 | 6 | 13 | 17 | 20 | 22 |
将上述数据制成散点图如图所示:
![]()
(1)根据散点图判断
与
中,哪个模型更适合刻画
,
之间的关系?并从函数增长趋势方面给出简单的理由;
(2)根据你的判断及下面的数据和公式,求出
关于
的回归方程,并预测当日销量
时,日盈利是多少?
参考公式及数据:线性回归方程
,其中
,
;
,
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场进行有奖促销活动,顾客购物每满500元,可选择返回50元现金或参加一次抽奖,抽奖规则如下:从1个装有6个白球、4个红球的箱子中任摸一球,摸到红球就可获得100元现金奖励,假设顾客抽奖的结果相互独立.
(Ⅰ)若顾客选择参加一次抽奖,求他获得100元现金奖励的概率;
(Ⅱ)某顾客已购物1500元,作为商场经理,是希望顾客直接选择返回150元现金,还是选择参加3次抽奖?说明理由;
(Ⅲ)若顾客参加10次抽奖,则最有可能获得多少现金奖励?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
、
、
,且
都有
,满足
的实数
有且只有
个,给出下述四个结论:
①满足题目条件的实数
有且只有
个;②满足题目条件的实数
有且只有
个;
③
在
上单调递增;④
的取值范围是
.
其中所有正确结论的编号是( )
A.①④B.②③C.①②③D.①③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年,新冠状肺炎疫情牵动每一个中国人的心,危难时刻众志成城,共克时艰,为疫区助力.福建省漳州市东山县共101个海鲜商家及个人为缓解武汉物质压力,募捐价值百万的海鲜输送武汉.东山岛,别称陵岛,形似蝴蝶亦称蝶岛,隶属于福建省漳州市东山县,是福建省第二大岛,中国第七大岛,介于厦门市和广东省汕头之间,东南是著名的闽南渔场和粤东渔场交汇处,因地理位置发展海产品养殖业具有得天独厚的优势.根据养殖规模与以往的养殖经验,某海鲜商家的海产品每只质量(克)在正常环境下服从正态分布
.
(1)随机购买10只该商家的海产品,求至少买到一只质量小于265克该海产品的概率;
(2)2020年该商家考虑增加先进养殖技术投入,该商家欲预测先进养殖技术投入为49千元时的年收益增量.现用以往的先进养殖技术投入
(千元)与年收益增量
(千元).
的数据绘制散点图,由散点图的样本点分布,可以认为样本点集中在曲线
的附近,且![]()
![]()
![]()
![]()
,![]()
,其中![]()
.根据所给的统计量,求y关于x的回归方程,并预测先进养殖技术投入为49千元时的年收益增量.
附:若随机变量
,则![]()
;
对于一组数据![]()
![]()
![]()
,其回归线
的斜率和截距的最小二乘估计分别为![]()
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com