精英家教网 > 高中数学 > 题目详情

【题目】已知函数

的单调区间和极值;

时,若,且,证明:

【答案】(1)见解析;(2)见解析

【解析】

(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间,从而求出函数的极值即可;

(2)代入a的值,求出函数的导数,结合均值不等式以及函数的单调性证明即可.

函数的定义域为

时,上单调递增,无极值;

时,由,得

时,,得的单调递增区间是

时,,得的单调递减区间是

的极大值为无极小值,

综上:当时,单调递增区间是,无减区间;无极值;

时,单调递增区间是,单调递减区间是,极大值为,无极小值.

时,

依题意,,则

所以,即

由均值不等式可得

所以,则有

代入上式得

,则

,即上单调递减,

于是,即,得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2018年开始,直播答题突然就火了,在某场活动中,最终仅有23人平分100万奖金,这23人可以说是“学霸”级的大神.但随着直播答题的发展,其模式的可持续性受到了质疑,某网战随机选取500名网民进行了调查,得到的数据如下表:

认为直播答题模式可持续

180

140

认为直播答题模式不可持续

120

60

(1)根据表格中的数据,用独立性检验的思维方法判断是否有97.5%的把握认为对直播答题模式的态度与性别有关系?

(2)已知在参与调查的500人中,有15%曾参加答题游戏瓜分过奖金,而男性被调查者有12%曾参加游戏瓜分过奖金,求女性被调查者参与游戏瓜分过奖金的概率.

参考公式:

临界值表:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的相邻两对称轴间的距离为,若将的图像先向左平移个单位,再向下平移个单位,所得的函数为奇函数.

1)求的解析式;

2)若关于的方程在区间上有两个不等实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答下列问题:

1)求平行于直线3x+4y- 2=0,且与它的距离是1的直线方程;

2)求垂直于直线x+3y -5=0且与点P( -1,0)的距离是的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二年级学生会有理科生4名,其中3名男同学;文科生3名,其中有1名男同学.从这7名成员中随机抽4人参加高中示范校验收活动问卷调查.

(Ⅰ)设为事件“选出的4人中既有文科生又有理科生”,求事件的概率;

(Ⅱ)设为选出的4人中男生人数与女生人数差的绝对值,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】依据某地某条河流8月份的水文观测点的历史统计数据所绘制的频率分布直方图如图(甲)所示;依据当地的地质构造,得到水位与灾害等级的频率分布条形图如图(乙)所示.

试估计该河流在8月份水位的中位数;

1)以此频率作为概率,试估计该河流在8月份发生1级灾害的概率;

2)该河流域某企业,在8月份,若没受12级灾害影响,利润为500万元;若受1级灾害影响,则亏损100万元;若受2级灾害影响则亏损1000万元.

现此企业有如下三种应对方案:

方案

防控等级

费用(单位:万元)

方案一

无措施

0

方案二

防控1级灾害

40

方案三

防控2级灾害

100

试问,如仅从利润考虑,该企业应选择这三种方案中的哪种方案?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各图中,AB为正方体的两个顶点,MNP分别为其所在棱的中点,能得出AB//平面MNP的图形的序号是( )

A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点的坐标分别为.直线相交于点,且它们的斜率之积是.记点的轨迹为

Ⅰ)求的方程.

Ⅱ)已知直线分别交直线于点,轨迹在点处的切线与线段交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知多面体的底面是边长为的菱形, 底面 ,且

1证明:平面平面

2若直线与平面所成的角为求二面角

的余弦值.

查看答案和解析>>

同步练习册答案