【题目】班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.
(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)
(2)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如下表:
学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
数学成绩 | 60 | 65 | 70 | 75 | 85 | 87 | 90 |
物理成绩 | 70 | 77 | 80 | 85 | 90 | 86 | 93 |
①若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为
,求
的分布列和数学期望;
②根据上表数据,求物理成绩
关于数学成绩
的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?
附:线性回归方程
,
其中
,
.
|
|
|
|
76 | 83 | 812 | 526 |
【答案】(1)不同的样本的个数为
.
(2)①分布列见解析,
.
②线性回归方程为
.可预测该同学的物理成绩为96分.
【解析】
(1)按比例抽取即可,再用乘法原理计算不同的样本数.
(2)
名学生中物理和数学都优秀的有3名学生,任取3名学生,都优秀的学生人数
服从超几何分布,故可得其概率分布列及其数学期望.而线性回归方程的计算可用给出的公式计算,并利用得到的回归方程预测该同学的物理成绩.
(1)依据分层抽样的方法,24名女同学中应抽取的人数为
名,
18名男同学中应抽取的人数为
名,
故不同的样本的个数为
.
(2)①∵7名同学中数学和物理成绩均为优秀的人数为3名,
∴
的取值为0,1,2,3.
∴
,
,
,
.
∴
的分布列为
| 0 | 1 | 2 | 3 |
|
|
|
|
|
∴
.
②∵
,
.
∴线性回归方程为
.
当
时,
.
可预测该同学的物理成绩为96分.
科目:高中数学 来源: 题型:
【题目】已知抛物线
,过
的直线与抛物线
相交于
两点.
(1)若点
是点
关于坐标原点
的对称点,求
面积的最小值;
(2)是否存在垂直于
轴的直线
,使得
被以
为直径的圆截得的弦长恒为定值?若存在,求出
的方程和定值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P—ABCD中,四边形ABCD为平行四边形,BD⊥DC,△PCD为正三角形,平面PCD⊥平面ABCD,E为PC的中点.
![]()
(1)证明:AP∥平面EBD;
(2)证明:BE⊥PC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为抗击新型冠状病毒,普及防护知识,某校开展了“疫情防护”网络知识竞赛活动.现从参加该活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:
,得到如图所示的频率分布直方图.
![]()
(1)求
的值,并估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);
(2)在抽取的100名学生中,规定:比赛成绩不低于80分为“优秀”,比赛成绩低于80分为“非优秀”.请将下面的2×2列联表补充完整,并判断是否有99%的把握认为“比赛成绩是否优秀与性别有关”?
优秀 | 非优秀 | 合计 | |
男生 | 40 | ||
女生 | 50 | ||
合计 | 100 |
参考公式及数据:
.
| 0.05 | 0.01 | 0.005 | 0.001 |
| 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】奇函数f(x)在R上存在导数
,当x<0时,![]()
f(x),则使得(x2﹣1)f(x)<0成立的x的取值范围为( )
A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(0,1)
C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
与抛物线
有共同的焦点,且离心率为
,设
分别是
为椭圆的上下顶点
(1)求椭圆
的方程;
(2)过点
与
轴不垂直的直线
与椭圆
交于不同的两点
,当弦
的中点
落在四边形
内(含边界)时,求直线
的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,圆台
的轴截面为等腰梯形
,
圆台
的侧面积为
.若点
分别为圆
上的动点,且点
在平面
的同侧.
![]()
(1)求证:
;
(2)若
,则当三棱锥
的体积取最大值时,求
与平面
所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com