【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,直线
的参数方程为
(
为参数),在以坐标原点
为极点,以
轴正半轴为极轴的极坐标中,圆
的方程为
.
(1)写出直线
的普通方程和圆
的直角坐标方程;
(2)若点
的坐标为
,圆
与直线
交于
两点,求
的值.
【答案】(1)
(2)![]()
【解析】
试题(1)由加减消元得直线
的普通方程,由
得圆
的直角坐标方程;(2)把直线l的参数方程代入圆C的直角坐标方程,由直线参数方程几何意义得|PA|+|PB|=|t1|+|t2|=t1+t2,再根据韦达定理可得结果
试题解析:解:(Ⅰ)由
得直线l的普通方程为x+y﹣3﹣
=0
又由
得 ρ2=2
ρsinθ,化为直角坐标方程为x2+(y﹣
)2=5;
(Ⅱ)把直线l的参数方程代入圆C的直角坐标方程,
得(3﹣
t)2+(
t)2=5,即t2﹣3
t+4=0
设t1,t2是上述方程的两实数根,
所以t1+t2=3![]()
又直线l过点P
,A、B两点对应的参数分别为t1,t2,
所以|PA|+|PB|=|t1|+|t2|=t1+t2=3
.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知直线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的非负半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求直线
的普通方程和曲线
的直角坐标方程;
(2)设点
,直线
与曲线
的交点为
、
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有如下命题,其中真命题的标号为( )
A.若幂函数
的图象过点
,则![]()
B.函数
(
,且
)的图象恒过定点![]()
C.函数
有两个零点
D.若函数
在区间
上的最大值为4,最小值为3,则实数m的取值范围是![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为等差数列,各项为正的等比数列
的前
项和为
,
,
,__________.在①
;②
;③
这三个条件中任选其中一个,补充在横线上,并完成下面问题的解答(如果选择多个条件解答,则以选择第一个解答记分).
(1)求数列
和
的通项公式;
(2)求数列
的前
项和
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某届奥运会上,中国队以26金18银26铜的成绩称金牌榜第三、奖牌榜第二,某校体育爱好者在高三年级一班至六班进行了“本届奥运会中国队表现”的满意度调查
结果只有“满意”和“不满意”两种
,从被调查的学生中随机抽取了50人,具体的调查结果如表:
班号 | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
频数 | 5 | 9 | 11 | 9 | 7 | 9 |
满意人数 | 4 | 7 | 8 | 5 | 6 | 6 |
(1)在高三年级全体学生中随机抽取一名学生,由以上统计数据估计该生持满意态度的概率;
(2)若从一班至二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为
,求随机变量
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆
的左、右焦点分别为
、
,
,点A为椭圆C上异于左右顶点的任意一点,A关于原点O的对称点为B,
,且
.
![]()
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若
是A关于x轴的对称点,设点
,连接NA,直线NA与椭圆C相交于点E,直线
与x轴相交于点M,求点M的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com