精英家教网 > 高中数学 > 题目详情
如图,P是四边形ABCD所在平面外一点,O是AC与BD的交点,且PO⊥平面ABCD.当四边形ABCD满足下列条件______时,点P到四边形四条边的距离相等.
①正方形;②圆的外切四边形;③菱形;④矩形.
精英家教网
连接PA、PB、PC、PD,作OE⊥AB于E,作OF⊥BC于F,连接PE、PF
精英家教网

∵PO⊥平面ABCD
∴△POE、△POF均为直角三角形
若OE=OF,则根据边角边公理,可得△POE≌△POF
则有PE=PF
又∵AB⊥OE,AB⊥PO,OE∩PO=O
∴AB⊥平面POE,可得PE是P到AB的距离
同理可得PF是P到BC的距离.
因此可得:OE=OF可答出推出P到AB的距离等于P到BC的距离.
同理可以得到P到其它边的距离也是相等的,反过来也成立.
故“O到边的距离相等”等价于“P到边的距离相等”
因为正方形、菱形和圆外切四边形都是有内切圆的四边形,
内切圆的圆心到四条边的距离相等
所以满足条件的应该是正方形、菱形和圆外切四边形
故答案为:①②③
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,△ABC是一块边长AB=3m,AC=5m,BC=7m的剩余角料.现要从中裁剪出一块面积最大的平行四边形用料APQR,要求顶点P,Q,R分别在边AB,BC,CA上.问点Q在BC边上的什么位置时,剪裁符合要求?并求这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD是圆的内接四边形,AB∥CD,过A点的圆的切线与CD的延长线交于P点,证明:
(1)∠PAD=∠CAB;
(2)AD2=AB•PD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD是边长为2的正方形纸片,沿某动直线l为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B都落在边AD上,记为B';折痕与AB交于点E,以EB和EB’为邻边作平行四边形EB’MB.若以B为原点,BC所在直线为x轴建立直角坐标系(如下图):
(Ⅰ).求点M的轨迹方程;
(Ⅱ).若曲线S是由点M的轨迹及其关于边AB对称的曲线组成的,等腰梯形A1B1C1D1的三边A1B1,B1C1,C1D1分别与曲线S切于点P,Q,R.求梯形A1B1C1D1面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)如图,直二面角E-AB-C中,四边形ABEF是矩形,AB=2,AF=2
3
,△ABC是以A为直角顶点的等腰直角三角形,点P是线段BF上的一个动点.
(1)若PB=PF,求异面直线PC与AB所成的角的余弦值;
(2)若二面角P-AC-B的大小为300,求证:FB⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源:学习周报 数学 人教课标高一版(A必修2) 2009-2010学年 第18期 总174期 人教课标高一版 题型:047

如图,P是平面四边形ABCD所在平面外一点,且AB=BC,AD=DC,PA=PC.

求证:平面PAC⊥平面PBD.

查看答案和解析>>

同步练习册答案