精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
4
+
y2
3
=1
,左焦点为F,右顶点为C,过F作直线l与椭圆交于A,B两点,求△ABC面积最大值.
分析:先根据标准方程求出焦点F与顶点C的坐标,设直线的方程为x=my-1,将x=my-1代入椭圆方程,再由韦达定理构造△ABO的面积关于m的函数,利用函数求最值的方法可求得最大值.
解答:解:由题意知:|FC|=a+c=2+1=3,F(-1,0),
设AB的直线方程x=my-1,不妨设直线AB与椭圆的交点A(x1,y1),B(x2,y2),
x=my-1
x2
4
+
y2
3
=1
⇒(3m2+4)y2-6my-9=0,则y1+y2=
6m
3m2+4
,y1y2=-
9
3m2+4

S△ABC=
1
2
×|FC|×|y1-y2|=
1
2
×3×
(y1+y2)2-4y1y2
=18×
m2+1
(3m2+4)2
=18×
1
9(m2+1)+6+
1
m2+1

设t=m2+1≥1,函数g(t)=9t+
1
t
g(t)=9-
1
t2
,∵t≥1,g′(t)>0
∴函数在[1,+∞)单调递增,
∴m2+1=1时,S△ABC最大,且最大值为
9
2
点评:本题考查椭圆的简单性质、考查直线与椭圆相交关系,考查韦达定理的应用及运用函数思想求最值,本题对学生的运算能力有较高要求,对解析式的变形是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知椭圆
x24
+y2=1
的左、右两个顶点分别为A,B,直线x=t(-2<t<2)与椭圆相交于M,N两点,经过三点A,M,N的圆与经过三点B,M,N的圆分别记为圆C1与圆C2
(1)求证:无论t如何变化,圆C1与圆C2的圆心距是定值;
(2)当t变化时,求圆C1与圆C2的面积的和S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
4
+y2=1
,过E(1,0)作两条直线AB与CD分别交椭圆于A,B,C,D四点,已知kABkCD=-
1
4

(1)若AB的中点为M,CD的中点为N,求证:①kOMkON=-
1
4
为定值,并求出该定值;②直线MN过定点,并求出该定点;
(2)求四边形ACBD的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆
x2
4
+y2=1
,弦AB所在直线方程为:x+2y-2=0,现随机向椭圆内丢一粒豆子,则豆子落在图中阴影范围内的概率为
π-2
π-2

(椭圆的面积公式S=π•a•b,其中a是椭圆长半轴长,b是椭圆短半轴长)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•朝阳区三模)已知椭圆
x2
4
+y2=1
的焦点分别为F1,F2,P为椭圆上一点,且∠F1PF2=90°,则点P的纵坐标可以是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x24
+y2=1
,过点M(-1,0)作直线l交椭圆于A,B两点,O是坐标原点.
(1)求AB中点P的轨迹方程;
(2)求△OAB面积的最大值,并求此时直线l的方程.

查看答案和解析>>

同步练习册答案