精英家教网 > 高中数学 > 题目详情

【题目】如图,在ABC中,B90°ABBC2PAB边上一动点,PDBCAC于点D,现将PDA沿PD翻折至PDA1EA1C的中点.

1)若PAB的中点证明:DE平面PBA1

2)若平面PDA1平面PDA,且DE平面CBA1,求二面角PA1DC的正弦值.

【答案】(1)详见解析(2)

【解析】

1)通过线线平行去得到线面平行,这也是线面平行证明中十分重要的手段.

2)利用空间向量求二面角的平面角的正弦值,向量法做题,一定要细心运算.

1)证明:取的中点,连接.

因为的中点且,所以是△的中位线.所以PDBC,且PD.

又因为的中点,的中点为,所以是△的中位线,

所以EFBC,且EF,所以PDEF平行且相等,

所以四边形是平行四边形,所以.

因为平面平面,所以平面.

2)解:因为平面,所以.又因为的中点,

所以,即的中点.可得,的中点.

,沿翻折至,且平面平面

利用面面垂直的性质可得平面,以点为原点建立坐标系如图所示,

.

设平面的法向量为

容易得到平面的法向量

设二面角的大小为,有

,所以

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2018年央视大型文化节目《经典咏流传》的热播,在全民中掀起了诵读诗词的热潮.某大学社团调查了该校文学院300名学生每天诵读诗词的时间(所有学生诵读时间都在两小时内),并按时间(单位:分钟)将学生分成六个组:,经统计得到了如图所

示的频率分布直方图

(Ⅰ)求频率分布直方图中的值,并估计该校文学院的学生每天诵读诗词的时间的平均数;

(Ⅱ)若两个同学诵读诗词的时间满足,则这两个同学组成一个“Team”,已知从每天诵读时间小于20分钟和大于或等于80分钟的所有学生中用分层抽样的方法抽取了5人,现从这5人中随机选取2人,求选取的两人能组成一个“Team”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有除颜色外完全相同的黑球和白球共7个,其中白球3个,现有甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取,,取后不放回,直到两人中有一人取到白球时终止.每个球在每一次被取出的机会是等可能的.

1)求取球2次即终止的概率;

2)求甲取到白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的单调区间;

2)设,若对任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在ABC中,B90°ABBC2PAB边上一动点,PDBCAC于点D,现将PDA沿PD翻折至PDA1EA1C的中点.

1)若PAB的中点,证明:DE平面PBA1

2)若平面PDA1平面PDA,且DE平面CBA1,求四棱锥A1PBCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用三种不同的颜色填涂如图3×3方格中的9个区域,要求每行、每列的三个区域都不同色,则不同的填涂方法种数共有(  )

A.48B.24C.12D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆

(1)过的直线截圆所得的弦长为,求该直线的斜率;

(2)动圆同时平分圆与圆的周长

求动圆圆心的轨迹方程;

问动圆是否过定点,若经过,则求定点坐标;若不经过,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,平面平面,△ABC为等腰三角形,的中点,的中点,且

(Ⅰ)证明:平面

(Ⅱ)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中:相关系数用来衡量两个变量之间线性关系的强弱,越接近于1,相关性越弱;回归直线过样本点中心相关指数用来刻画回归的效果,越小,说明模型的拟合效果越不好.两个模型中残差平方和越小的模型拟合的效果越好.正确的个数是(

A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案