【题目】如图,四棱锥
的底面
为平行四边形,
底面
,
,
,
,
.
![]()
(Ⅰ)求证:平面
平面
;
(Ⅱ)在侧棱
上是否存在点E,使
与底面
所成的角为45°?若存在,求
的值,若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】近年来,我国电子商务行业迎来了蓬勃发展的新机遇,但是电子商务行业由于缺乏监管,服务质量有待提高.某部门为了对本地的电商行业进行有效监管,调查了甲、乙两家电商的某种同类产品连续十天的销售额(单位:万元),得到如下茎叶图:
甲 | 乙 | |||||
7 | 5 | 10 | 7 | |||
9 | 5 | 3 | 11 | 5 | 7 | 8 |
8 | 6 | 12 | 3 | 5 | ||
4 | 2 | 13 | 2 | 6 | 9 | |
1 | 14 | 8 | ||||
(1)根据茎叶图判断甲、乙两家电商对这种产品的销售谁更稳定些?
(2)为了综合评估本地电商的销售情况,从甲、乙两家电商十天的销售数据中各抽取两天的销售数据,其中销售额不低于120万元的天数分别记为
,令
,求随机变量Y的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人进行象棋比赛,采取五局三胜制(不考虑平局,先赢得三场的人为获胜者,比赛结束).根据前期的统计分析,得到甲在和乙的第一场比赛中,取胜的概率为0.5,受心理方面的影响,前一场比赛结果会对甲的下一场比赛产生影响,如果甲在某一场比赛中取胜,则下一场取胜率提高0.1,反之,降低0.1.则甲以3:1取得胜利的概率为( )
A.0.162B.0.18C.0.168D.0.174
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱锥
中,
,
是正三角形,且平面
平面ABC,
,E,G分别为AB,BC的中点.
![]()
(Ⅰ)证明:
平面ABD;
(Ⅱ)若F是线段DE的中点,求AC与平面FGC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四边形ABCD中,
,_________,DC=2,在下面给出的三个条件中任选一个,补充在上面的问题中,并加以解答.(选出一种可行的方案解答,若选出多个方案分别解答,则按第一个解答记分)①
;②
;③
.
![]()
(1)求
的大小;
(2)求△ADC面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】目前,我国老年人口比例不断上升,造成日趋严峻的人口老龄化问题.2019年10月12日,北京市老龄办、市老龄协会联合北京师范大学中国公益研究院发布《北京市老龄事业发展报告(2018)》,相关数据有如下图表.规定年龄在15岁至59岁为“劳动年龄”,具备劳动力,60岁及以上年龄为“老年人”,据统计,2018年底北京市每2.4名劳动力抚养1名老年人.
![]()
![]()
(Ⅰ)请根据上述图表计算北京市2018年户籍总人口数和北京市2018年的劳动力数;(保留两位小数)
(Ⅱ)从2014年起,北京市老龄人口与年份呈线性关系,比照2018年户籍老年人人口年龄构成,预计到2020年年底,北京市90以上老人达到多少人?(精确到1人)
(附:对于一组数据
其回归直线
的斜率和截距的最小二乘法估计分别为:
,
.
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,设点
为圆
与
轴负半轴的交点,点
为圆
上一点,且满足
的中点在
轴上.
(1)当
变化时,求点
的轨迹方程;
(2)设点
的轨迹为曲线
,
、
为曲线
上两个不同的点,且在
、
两点处的切线的交点在直线
上,证明:直线
过定点,并求此定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如:在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65.若在个、十、百、千位档中随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字大于200的概率为( ).
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com