(本小题满分12分)
已知函数
,且
。
(I)试用含
的代数式表示
;
(Ⅱ)求
的单调区间;
(Ⅲ)令
,设函数
在
处取得极值,记点
,证明:线段
与曲线
存在异于
、
的公共点。
(I)![]()
(Ⅱ)当
时,函数
的单调增区间为
和
,单调减区间为
;
当
时,函数
的单调增区间为R;
当
时,函数
的单调增区间为
和
,单调减区间为
。
(Ⅲ)证明见解析。
解法一:
(I)依题意,得![]()
由
得![]()
(Ⅱ)由(I)得![]()
故![]()
令
,则
或![]()
①当
时,![]()
当
变化时,
与
的变化情况如下表:
|
|
|
|
|
|
| + | — | + |
|
| 单调递增 | 单调递减 | 单调递增 |
由此得,函数
的单调增区间为
和
,单调减区间为![]()
②由
时,
,此时,
恒成立,且仅在
处
,故函数
的单调区间为R
③当
时,
,同理可得函数
的单调增区间为
和
,单调减区间为![]()
综上:
当
时,函数
的单调增区间为
和
,单调减区间为
;
当
时,函数
的单调增区间为R;
当
时,函数
的单调增区间为
和
,单调减区间为![]()
(Ⅲ)当
时,得![]()
由
,得![]()
由(Ⅱ)得
的单调增区间为
和
,单调减区间为![]()
所以函数
在
处取得极值。
故![]()
所以直线
的方程为![]()
由
得![]()
令![]()
易得
,而
的图像在
内是一条连续不断的曲线,
故
在
内存在零点
,这表明线段
与曲线
有异于
的公共点
解法二:
(I)同解法一
(Ⅱ)同解法一。
(Ⅲ)当
时,得
,由
,得![]()
由(Ⅱ)得
的单调增区间为
和
,单调减区间为
,所以函数
在
处取得极值,
故![]()
所以直线
的方程为![]()
由
得![]()
解得![]()
![]()
所以线段
与曲线
有异于
的公共点
。
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com