精英家教网 > 高中数学 > 题目详情
我们把函数f(x)连续进行n次求导后得到的函数,称为函数f(x)的n阶导函数,记为f(n)(x)(其中n∈N+).比如:若f(x)=x3,则f(2)(x)=6x.现给出下列函数:①f(x)=ex;②f(x)=lnx;③f(x)=sinx;④f(x)=cosx;⑤f(x)=2.其中“?n∈N+,f(n)(x)=f(x)”的是(  )
分析:利用导数的运算法则和周期性即可得出.
解答:解:①∵(ex(n)=ex,∴?n∈N+,满足f(n)(x)=f(x);
(lnx)=
1
x
(lnx)(2)=(
1
x
)
=-
1
x2
,…,∴不存在n∈N+,满足f(n)(x)=f(x);
③(sinx)′=cosx,(sinx)=(cosx)′=-sinx,(sinx)(3)=-cosx,(sinx)(4)=sinx,…,因此存在n∈N+满足f(n)(x)=f(x);
④同③.
⑤2′=0,∴不存在n∈N+,f(n)(x)=f(x).
综上可知:只有①③④符合条件.
故选:D.
点评:本题考查了导数的运算法则和周期性,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•崇明县二模)某公司生产某种消防安全产品,年产量x台(0≤x≤100,x∈N)时,销售收入函数R(x)=3000x-20x2(单位:百元),其成本函数满足C(x)=500x+b(单位:百元).已知该公司不生产任何产品时,其成本为4000(百元).
(1)求利润函数P(x);
(2)问该公司生产多少台产品时,利润最大,最大利润是多少?
(3)在经济学中,对于函数f(x),我们把函数f(x+1)-f(x)称为函数f(x)的边际函数,记作Mf(x).对于(1)求得的利润函数P(x),求边际函数MP(x);并利用边际函数MP(x)的性质解释公司生产利润情况.(本题所指的函数性质主要包括:函数的单调性、最值、零点等)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某公司生产某种消防安全产品,年产量x台(0≤x≤100,x∈N)时,销售收入函数R(x)=3000x-20x2(单位:百元),其成本函数满足C(x)=500x+b(单位:百元).已知该公司不生产任何产品时,其成本为4000(百元).
(1)求利润函数P(x);
(2)问该公司生产多少台产品时,利润最大,最大利润是多少?
(3)在经济学中,对于函数f(x),我们把函数f(x+1)-f(x)称为函数f(x)的边际函数,记作Mf(x).对于(1)求得的利润函数P(x),求边际函数MP(x);并利用边际函数MP(x)的性质解释公司生产利润情况.(本题所指的函数性质主要包括:函数的单调性、最值、零点等)

查看答案和解析>>

科目:高中数学 来源:2011年上海市崇明县高考数学二模试卷(理科)(解析版) 题型:解答题

某公司生产某种消防安全产品,年产量x台(0≤x≤100,x∈N)时,销售收入函数R(x)=3000x-20x2(单位:百元),其成本函数满足C(x)=500x+b(单位:百元).已知该公司不生产任何产品时,其成本为4000(百元).
(1)求利润函数P(x);
(2)问该公司生产多少台产品时,利润最大,最大利润是多少?
(3)在经济学中,对于函数f(x),我们把函数f(x+1)-f(x)称为函数f(x)的边际函数,记作Mf(x).对于(1)求得的利润函数P(x),求边际函数MP(x);并利用边际函数MP(x)的性质解释公司生产利润情况.(本题所指的函数性质主要包括:函数的单调性、最值、零点等)

查看答案和解析>>

科目:高中数学 来源:2011年上海市崇明县高考数学二模试卷(文科)(解析版) 题型:解答题

某公司生产某种消防安全产品,年产量x台(0≤x≤100,x∈N)时,销售收入函数R(x)=3000x-20x2(单位:百元),其成本函数满足C(x)=500x+b(单位:百元).已知该公司不生产任何产品时,其成本为4000(百元).
(1)求利润函数P(x);
(2)问该公司生产多少台产品时,利润最大,最大利润是多少?
(3)在经济学中,对于函数f(x),我们把函数f(x+1)-f(x)称为函数f(x)的边际函数,记作Mf(x).对于(1)求得的利润函数P(x),求边际函数MP(x);并利用边际函数MP(x)的性质解释公司生产利润情况.(本题所指的函数性质主要包括:函数的单调性、最值、零点等)

查看答案和解析>>

同步练习册答案