【题目】为贯彻落实教育部等6部门《关于加快发展青少年校园足球的实施意见》,全面提高我市中学生的体质健康水平,普及足球知识和技能,市教体局决定矩形春季校园足球联赛,为迎接此次联赛,甲同学选拔了20名学生组成集训队,现统计了这20名学生的身高,记录如下表:
身高( | 168 | 174 | 175 | 176 | 178 | 182 | 185 | 188 |
人数 | 1 | 2 | 4 | 3 | 5 | 1 | 3 | 1 |
(1)请计算这20名学生的身高中位数、众数,并补充完成下面的茎叶图;
![]()
(2)身高为185
和188
的四名学生分别为
,
,
,
,先从这四名学生中选2名担任正副门将,请利用列举法列出所有可能情况,并求学生
入选正门将的概率.
科目:高中数学 来源: 题型:
【题目】如图所示,已知抛物线
,过点
任作一直线与
相交于
两点,过点
作
轴的平行线与直线
相交于点
为坐标原点).
(1)证明: 动点
在定直线上;
(2)作
的任意一条切线
(不含
轴), 与直线
相交于点
与(1)中的定直线相交于点
.
证明:
为定值, 并求此定值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其中
,
.
是自然对数的底数.
(1)求曲线
在
处的切线方程为
,求实数
,
的值;
(2)①若
时,函数
既有极大值又有极小值,求实数
的取值范围;
②若
,
,若
对一切正实数
恒成立,求实数
的取值范围(用
表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
的左、右焦点分别为
,
,点
在椭圆上,
,且
的面积为4.
(1)求椭圆的方程;
(2)点
是椭圆上任意一点,
分别是椭圆的左、右顶点,直线
与直线
分别交于
两点,试证:以
为直径的圆交
轴于定点,并求该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】先后2次抛掷一枚骰子,将得到的点数分别记为
.
(Ⅰ)求满足
的概率;
(Ⅱ)设三条线段的长分别为
和5,求这三条线段能围成等腰三角形(含等边三角形)的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,椭圆
的离心率为
,右顶点为
,直线
过原点
,且点
在x轴的上方,直线
与
分别交直线
:
于点
、
.
![]()
(1)若点
,求椭圆的方程及△ABC的面积;
(2)若
为动点,设直线
与
的斜率分别为
、
.
①试问
是否为定值?若为定值,请求出;否则,请说明理由;
②求△AEF的面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com