【题目】已知
的左、右焦点分别为
,
,点
在椭圆上,
,且
的面积为4.
(1)求椭圆的方程;
(2)点
是椭圆上任意一点,
分别是椭圆的左、右顶点,直线
与直线
分别交于
两点,试证:以
为直径的圆交
轴于定点,并求该定点的坐标.
科目:高中数学 来源: 题型:
【题目】为贯彻落实教育部等6部门《关于加快发展青少年校园足球的实施意见》,全面提高我市中学生的体质健康水平,普及足球知识和技能,市教体局决定矩形春季校园足球联赛,为迎接此次联赛,甲同学选拔了20名学生组成集训队,现统计了这20名学生的身高,记录如下表:
身高( | 168 | 174 | 175 | 176 | 178 | 182 | 185 | 188 |
人数 | 1 | 2 | 4 | 3 | 5 | 1 | 3 | 1 |
(1)请计算这20名学生的身高中位数、众数,并补充完成下面的茎叶图;
![]()
(2)身高为185
和188
的四名学生分别为
,
,
,
,先从这四名学生中选2名担任正副门将,请利用列举法列出所有可能情况,并求学生
入选正门将的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列结论正确的是
①在某项测量中,测量结果
服从正态分布
.若
在
内取值的概率为0.35,则
在
内取值的概率为0.7;
②以模型
去拟合一组数据时,为了求出回归方程,设
,其变换后得到线性回归方程
,则
;
③已知命题“若函数
在
上是增函数,则
”的逆否命题是“若
,则函数
在
上是减函数”是真命题;
④设常数
,则不等式
对
恒成立的充要条件是
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业开发一种新产品,现准备投入适当的广告费,对产品进行促销,在一年内,预计年销量Q(万件)与广告费x(万件)之间的函数关系为
,已知生产此产品的年固定投入为3万元,每年产1万件此产品仍需要投入32万元,若年销售额为
,而当年产销量相等。
(1)试将年利润P(万件)表示为年广告费x(万元)的函数;
(2)当年广告费投入多少万元时,企业年利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】先后2次抛掷一枚骰子,将得到的点数分别记为
.
(Ⅰ)求满足
的概率;
(Ⅱ)设三条线段的长分别为
和5,求这三条线段能围成等腰三角形(含等边三角形)的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图, 椭圆
的离心率是
,点
在椭圆上, 设点
分别是椭圆的右顶点和上顶点, 过 点
引椭圆
的两条弦
、
.
(1)求椭圆
的方程;
(2)若直线
与
的斜率是互为相反数.
①直线
的斜率是否为定值?若是求出该定值, 若不是,说明理由;
②设
、
的面积分别为
和
,求
的取值范围.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com