【题目】已知
,
,
,若
,
(
).
(1)求函数
的解析式;
(2)求函数
在
条件下的最小值;
(3)把
的图像按向量
平移得到曲线
,过坐标原点
作
、
分别交曲线
于点
、
,直线
交
轴于点
,当
为锐角时,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,
,
, O为DE的中点,
.F为
的中点,平面
平面BCED.
![]()
(1)求证:平面
平面
.
(2)线段OC上是否存在点G,使得
平面EFG?说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】汕尾市基础教育处为调查在校中学生每天放学后的自学时间情况,在本市的所有中学生中随机抽取了120名学生进行调查,现将日均自学时间小于1小时的学生称为“自学不足”者
根据调查结果统计后,得到如下
列联表,已知在调查对象中随机抽取1人,为“自学不足”的概率为
.
非自学不足 | 自学不足 | 合计 | |
配有智能手机 | 30 | ||
没有智能手机 | 10 | ||
合计 |
请完成上面的列联表;
根据列联表的数据,能否有
的把握认为“自学不足”与“配有智能手机”有关?
附表及公式:
,其中![]()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司全年的纯利润为
元,其中一部分作为奖金发给
位职工,奖金分配方案如下首先将职工工作业绩(工作业绩均不相同)从大到小,由1到
排序,第1位职工得奖金
元,然后再将余额除以
发给第2位职工,按此方法将奖金逐一发给每位职工,并将最后剩余部分作为公司发展基金.
(1)设
为第
位职工所得奖金额,试求
并用
和
表示
(不必证明);
(2)证明
并解释此不等式关于分配原则的实际意义;
(3)发展基金与
和
有关,记为
对常数
,当
变化时,求
.(可用公式
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点
,
,
,
是椭圆上任意三点,
,
关于原点对称且满足
.
(1)求椭圆
的方程.
(2)若斜率为
的直线与圆:
相切,与椭圆
相交于不同的两点
、
,求
时,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解
地区足球特色学校的发展状况,某调查机构得到如下统计数据:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
足球特色学校 | 0.30 | 0.60 | 1.00 | 1.40 | 1.70 |
(Ⅰ)根据上表数据,计算
与
的相关系数
,并说明
与
的线性相关性强弱(已知:
,则认为
与
线性相关性很强;
,则认为
与
线性相关性一般;
,则认为
与
线性相关性较弱);
(Ⅱ)求
关于
的线性回归方程,并预测
地区2019年足球特色学校的个数(精确到个)
参考公式:
,
,
,
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于集合
,定义函数
对于两个集合
,定义集合
. 已知
,
.
(Ⅰ)写出
和
的值,并用列举法写出集合
;
(Ⅱ)用
表示有限集合
所含元素的个数,求
的最小值;
(Ⅲ)有多少个集合对
,满足
,且
?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
1
当
时,求曲线
在
处的切线方程;
2
若
是R上的单调递增函数,求a的取值范围;
3
若函数
对任意的实数
,存在唯一的实数
,使得
成立,求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:函数f(x)=lg(ax2-x+16a)的定义域为R;命题q:不等式3x-9x<a对任意x∈R恒成立.
(1)如果p是真命题,求实数a的取值范围;
(2)如果命题“p或q”为真命题且“p且q”为假命题,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com