【题目】某企业节能降耗技术改造后,在生产某产品过程中的产量x(吨)与相应的生产能耗y(吨)的几组对应数据如表所示:
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
若根据表中数据得出y关于x的线性回归方程为
0.7x+a,若生产7吨产品,预计相应的生产能耗为( )吨.
A.5.25B.5.15C.5.5D.9.5
科目:高中数学 来源: 题型:
【题目】记无穷数列
的前
项中最大值为
,最小值为
,令![]()
(Ⅰ)若
,请写出
的值;
(Ⅱ)求证:“数列
是等差数列”是“数列
是等差数列”的充要条件;
(Ⅲ)若
,求证:存在
,使得
,有
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
,向量
,且函数
.
(1)求函数
的单调递增区间及其对称中心;
(2)在
中,角A,B,C所对的边分别为a,b,c且角A满足
.若
,BC边上的中线长为3,求
的面积S.
(3)将函数
的图像向左平移
个长度单位,向下平移
个长度单位,再横坐标不变,纵坐标缩短为原来的
后得到函数
的图像,令函数
在
的最小值为
,求正实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列说法:
①“
”是“
”的充分不必要条件;
②定义在
上的偶函数
的最大值为30;
③命题“
,
”的否定形式是“
,
”.其中正确说法的个数为
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,曲线
:
,在以坐标原点为极点,
轴的正半轴为极轴的极坐标系中,曲线
:
.
(Ⅰ)写出
,
的直角坐标方程;
(Ⅱ)点
,
分别是曲线
,
上的动点,且点
在
轴的上侧,点
在
轴的左侧,
与曲线
相切,求当
最小时,直线
的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年国际乒联总决赛在韩国仁川举行,比赛时间为12月13﹣12月16日,在男子单打项目,中国队准备选派4人参加.已知国家一线队共6名队员,二线队共4名队员.
(1)求恰好有3名国家一线队队员参加比赛的概率;
(2)设随机变量
表示参加比赛的国家二线队队员的人数,求
的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:
,直线l过点
.
![]()
(1)若直线l与圆心C的距离为1,求直线l的方程;
(2)若直线l与圆C交于M,N两点,且
,求以MN为直径的圆的方程;
(3)设直线
与圆C交于A,B两点,是否存在实数a,使得直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com