精英家教网 > 高中数学 > 题目详情
9.在△ABC中,AB=5,AC=7,若O为△ABC外接圆的圆心,则$\overrightarrow{AO}•\overrightarrow{BC}$的值为12.

分析 作OD⊥AB于D,OE⊥AC于E,由垂径定理得D、E分别为AB、AC的中点,利用三角函数在直角三角形中的定义,可得cos∠OAD=$\frac{|\overrightarrow{AD}|}{|\overrightarrow{AO}|}$,由向量数量积的定义得$\overrightarrow{AO}$•$\overrightarrow{AB}$=|$\overrightarrow{AO}$|•|$\overrightarrow{AB}$|cos∠OAD=|$\overrightarrow{AB}$|•|$\overrightarrow{AD}$|=$\frac{1}{2}$|$\overrightarrow{AB}$|2,同理可得$\overrightarrow{AO}$•$\overrightarrow{AC}$=$\frac{1}{2}$|$\overrightarrow{AC}$|2,而$\overrightarrow{AO}$•$\overrightarrow{BC}$=$\overrightarrow{AO}$•($\overrightarrow{AC}$-$\overrightarrow{AB}$),展开后代入前面的数据即可得到$\overrightarrow{AO}•\overrightarrow{BC}$的值.

解答 解:作OD⊥AB于D,OE⊥AC于E,
∵⊙O中,OD⊥AB,
∴AD=$\frac{1}{2}$AB,cos∠OAD=$\frac{|\overrightarrow{AD}|}{|\overrightarrow{AO}|}$,
因此,$\overrightarrow{AO}$•$\overrightarrow{AB}$=|$\overrightarrow{AO}$|•|$\overrightarrow{AB}$|cos∠OAD=|$\overrightarrow{AB}$|•|$\overrightarrow{AD}$|=$\frac{1}{2}$|$\overrightarrow{AB}$|2=$\frac{25}{2}$;
同理可得$\overrightarrow{AO}$•$\overrightarrow{AC}$=$\frac{1}{2}$|$\overrightarrow{AC}$|2=$\frac{49}{2}$.
∴$\overrightarrow{AO}$•$\overrightarrow{BC}$=$\overrightarrow{AO}$•($\overrightarrow{AC}$-$\overrightarrow{AB}$)=$\overrightarrow{AO}$•$\overrightarrow{AC}$-$\overrightarrow{AO}$•$\overrightarrow{AB}$=$\frac{49}{2}$-$\frac{25}{2}$=12.
故答案为:12.

点评 本题给出三角形的外接圆的圆心为0,在已知边长的情况下求$\overrightarrow{AO}•\overrightarrow{BC}$的值,着重考查了圆中垂直于弦的直径性质、三角函数在直角三角形中的定义和向量数量积公式及其性质等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.在△ABC中,a,b,c分别为三个内角A,B,C所对的边,设向量$\overrightarrow m=(b-c,c-a)$,$\overrightarrow n=(b,c+a)$,且$\overrightarrow m⊥\overrightarrow n$,b和c的等差中项为$\frac{1}{2}$,则△ABC面积的最大值为$\frac{{\sqrt{3}}}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知a>0,($\frac{a}{\sqrt{x}}$-x)6展开式的常数项为240,则${∫}_{-a}^{a}$(x2+x+$\sqrt{4-{x}^{2}}$)dx=$\frac{16}{3}$+2π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=ax2lnx-(x-1)(x>0),曲线y=f(x)在点(1,0)处的切线方程为y=0.
(1)求证:当x≥1时,f(x)≥(x-1)2; 
(2)若当x≥1时,f(x)≥m(x-1)2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.定义在区间I上的函数f(x),若任给x0∈I,均有f(x0)∈I,则称函数f(x)在区间I上“和谐函数”.
(1)已知函数判断f(x)=-2x+5,在区间[-1,3]是否“和谐函数“,并说明理由;
(2)设g(x)=$\frac{1}{2}$x2-x+$\frac{3}{2}$是[1,b]上的“和谐函数”,求常数b的取值范围;
(3)函数h(x)=$\frac{2x+m}{x+2}$在区间[2,3]上“和谐函数”,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{m}$=(2sinθ,sinθ-cosθ),$\overrightarrow n=(cosθ,-2-m)$,函数$f(θ)=\overrightarrow m•\overrightarrow n$的最小值为g(m).
(1)当m=2时,求g(m)的值;
(2)求g(m);
(3)已知函数h(x)为定义在R上的增函数,且对任意的x1,x2都满足h(x1+x2)=h(x1)+h(x2),问:是否存在这样的实数m,使不等式$h(\frac{4}{sinθ-cosθ})+h(2m+3)>h(f(θ))$对所有$θ∈(\frac{π}{4},π)$恒成立.若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=Asin(ωx+φ),其中ω>0,A>0,-$\frac{π}{2}$<φ<0,x∈R且函数f(x)的最小值为-$\frac{\sqrt{2}}{2}$,相邻两条对称轴之间的距离为$\frac{π}{2}$,满足f($\frac{π}{4}$)=$\frac{1}{2}$
(1)求f(x)的解析式;
(2)若对任意实数x∈[$\frac{π}{6}$,$\frac{π}{3}$],不等式f(x)-m<$\frac{3}{2}$恒成立,求实数m的取值范围;
(3)设0<x≤$\frac{π}{2}$,且方程f(x)=m有两个不同的实数根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在中国古代的历法中,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫作“十二地支”.古人用天干地支来表示年、月、日、时,十天干和十二地支进行循环组合:甲子、乙丑、丙寅…一直到癸亥,共得到60个组合,称为六十甲子.如果2016年是丙申年,那么1958年是(  )
A.乙未年B.丁酉年C.戊戌年D.己亥年

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=sinxcosx+sinx+cosx(x∈R)的最大值是$\frac{1}{2}+\sqrt{2}$.

查看答案和解析>>

同步练习册答案