【题目】已知:函数
,
.
(1)当
时,求
的值域;
(2)求
的最大值.
【答案】(1)[1,5];(2)见解析
【解析】
(1)根据题意,a=1时,f(x)=x2﹣2x+2=(x﹣1)2+1,由二次函数的性质分析可得答案;
(2)根据题意,f(x)=x2﹣2ax+2=(x﹣a)2+2﹣a2,是对称轴为x=a,且开口向上的二次函数;按a的取值范围分3种情况讨论即可得答案.
(1)根据题意,a=1时,f(x)=x2﹣2x+2=(x﹣1)2+1,
又由
,则x=1,函数有最小值1,当x=-1,函数有最大值5,故1≤f(x)≤5,
即函数的值域为[1,5];
(2)根据题意,f(x)=x2﹣2ax+2=(x﹣a)2+2﹣a2,是对称轴为x=a,且开口向上的二次函数;
分3种情况讨论:
当a<-1时,f(x)在[-1,2]上为增函数,此时最大值为f(2)=6-4a,
当-1≤a≤2时,此时最大值为f(a)=2﹣a2,
当a>2时,f(x)在[-1,2]上为减函数,此时最大值为f(-1)=3+2a,
科目:高中数学 来源: 题型:
【题目】已知中心在原点
,焦点在
轴上,离心率为
的椭圆过点
.
(1)求椭圆的方程;
(2)设椭圆与
轴的非负半轴交于点
,过点
作互相垂直的两条直线,分别交椭圆于
两点,连接
,求
的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
是抛物线为
上的一点,以S为圆心,r为半径
做圆,分别交x轴于A,B两点,连结并延长SA、SB,分别交抛物线于C、D两点.
求抛物线的方程.
求证:直线CD的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场为了了解顾客的购物信息,随机在商场收集了
位顾客购物的相关数据如下表:
一次购物款(单位:元) |
|
|
|
|
|
顾客人数 |
|
|
|
|
|
统计结果显示
位顾客中购物款不低于
元的顾客占
,该商场每日大约有
名顾客,为了增加商场销售额度,对一次购物不低于
元的顾客发放纪念品.
(Ⅰ)试确定
,
的值,并估计每日应准备纪念品的数量;
(Ⅱ)为了迎接春节,商场进行让利活动,一次购物款
元及以上的一次返利
元;一次购物不超过
元的按购物款的百分比返利,具体见下表:
一次购物款(单位:元) |
|
|
|
|
返利百分比 |
|
|
|
|
请问该商场日均大约让利多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+bx+c,其图象与y轴的交点为(0,1),且满足f(1﹣x)=f(1+x).
(1)求f(x);
(2)设
,m>0,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf(x),若对于一切x∈[0,1],不等式h(x+1﹣t)<h(2x+2)恒成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
是圆
:
上任意一点,点
与圆心
关于原点对称.线段
的中垂线与
交于
点.
(1)求动点
的轨迹方程
;
(2)设点
,若直线
轴且与曲线
交于另一点
,直线
与直线
交于点
,证明:点
恒在曲线
上,并求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )
①我离开学校不久,发现自己把作业本忘在教室,于是立刻返回教室里取了作业本再回家;
②我放学回家骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;
![]()
③我放学从学校出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.
A.(1)(2)(4)B.(4)(1)(2)C.(4)(1)(3)D.(4)(2)(3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校选派甲、乙、丙、丁、戊5名学生代表学校参加市级“演讲”和“诗词”比赛,下面是他们的一段对话.甲说:“乙参加‘演讲’比赛”;乙说:“丙参加‘诗词’比赛”;丙说“丁参加‘演讲’比赛”;丁说:“戊参加‘诗词’比赛”;戊说:“丁参加‘诗词’比赛”.
已知这5个人中有2人参加“演讲”比赛,有3人参加“诗词”比赛,其中有2人说的不正确,且参加“演讲”的2人中只有1人说的不正确.根据以上信息,可以确定参加“演讲”比赛的学生是
A. 甲和乙 B. 乙和丙 C. 丁和戊 D. 甲和丁
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com