【题目】等差数列
中,
,
,其前
项和为
.
(1)求数列
的通项公式;
(2)设数列
满足
,其前
项和为为
,求证:
.
科目:高中数学 来源: 题型:
【题目】已知:直线
,一个圆与
轴正半轴与
轴正半轴都相切,且圆心
到直线
的距离为
.
(
)求圆的方程.
(
)
是直线
上的动点,
,
是圆的两条切线,
,
分别为切点,求四边形
的面积的最小值.
(
)圆与
轴交点记作
,过
作一直线
与圆交于
,
两点,
中点为
,求
最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a∈R,f(x)=log2(1+ax).
(1)求f(x2)的值域;
(2)若关于x的方程f(x)-log2[(a-4)x2+(2a-5)x]=0的解集恰有一个元素,求实数a的取值范围;
(3)当a>0时,对任意的t∈(
,+∞),f(x2)在[t,t+1]的最大值与最小值的差不超过4,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围是 ( ).
A.
B.[-1,0] C.(-∞,-2] D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某民营企业生产
两种产品,根据市场调查与预测,
产品的利润与投资成正比,其关系如图甲,
产品的利润与投资的算术平方根成正比,其关系如图乙(注:利润与投资单位:万元).
![]()
(1)分别将
两种产品的利润表示为投资
(万元)的函数关系式;
(2)该企业已筹集到10万元资金,并全部投入
两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高二年级有甲、乙、丙三个班参加社会实践活动,高二年级老师要分到各个班级带队,其中男女老师各一半,每次任选两个老师,将其中一个老师分到甲班,如果这个老师是男老师,就将另一个老师分到乙班,否则就分到丙班,重复上述过程,直到所有老师都分到班级,则
A. 乙班女老师不多于丙班女老师 B. 乙班男老师不多于丙班男老师
C. 乙班男老师与丙班女老师一样多 D. 乙班女老师与丙班男老师一样多
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4﹣1:几何证明选讲
如图,已知四边形ABCD内接于⊙O,且AB是的⊙O直径,过点D的⊙O的切线与BA的延长线交于点M.![]()
(1)若MD=6,MB=12,求AB的长;
(2)若AM=AD,求∠DCB的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设全集U=R,集合A={x|2x-1≥1},B={x|x2-4x-5<0}.
(Ⅰ)求A∩B,(UA)∪(UB);
(Ⅱ)设集合C={x|m+1<x<2m-1},若B∩C=C,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com