如图,四边形PCBM是直角梯形,
,
∥
,
.又
,
,直线AM与直线PC所成的角为
.![]()
(1)求证:
;
(2)求二面角
的余弦值.
解析试题分析:方法1:(1)∵
,∴
平面ABC,∴
.5分
(2)取BC的中点N,连MN.∵
,∴
,∴
平面ABC.作![]()
,交AC的延长线于H,连结MH.由三垂线定理得
,∴
为二面角
的平面角.∵直线AM与直线PC所成的角为
,∴在
中,
.
在
中,
.
在
中,
.
在
中,
.
在
中,∵
,∴
.
故二面角
的余弦值为
.13分
方法2:(1)∵
,∴
平面ABC,∴
.5分
(2)在平面ABC内,过C作BC的垂线,并建立空间直角坐标系如图所示.设
,则
.
. 5分
∵
,
且
,∴
,得
,∴
. 8分
设平面MAC的一个法向量为
,则由
得
得
∴
. 10分
平面ABC的一个法向量为
.
12分
显然,二面角
为锐二面角,∴二面角
的余弦值为
.13分
考点:二面角的平面角,线线垂直
点评:解决的关键是借助于空间向量法或几何性质法来得到证明和求解,属于基础题。
科目:高中数学 来源: 题型:解答题
如图,
为圆
的直径,点
、
在圆
上,
,矩形
所在的平面和圆
所在的平面互相垂直,且
,
.![]()
(1)求证:
平面
;
(2)设
的中点为
,求证:
平面
;
(3)设平面
将几何体
分成的两个锥体的体积分别为
,
,求![]()
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图甲,在平面四边形ABCD中,已知![]()
,
,现将四边形ABCD沿BD折起,使平面ABD
平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.![]()
![]()
(1)求证:DC
平面ABC;
(2)求BF与平面ABC所成角的正弦值;
(3)求二面角B-EF-A的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
![]()
是双曲线![]()
![]()
上一点,
、
分别是双曲线
的左、右顶点,直线
,
的斜率之积为
.![]()
(1)求双曲线的离心率;
(2)过双曲线
的右焦点且斜率为1的直线交双曲线于
,
两点,
为坐标原点,
为双曲线上一点,满足
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,已知AC ⊥平面CDE, BD ∥AC ,
为等边三角形,F为ED边上的中点,且
,![]()
(Ⅰ)求证:CF∥面ABE;
(Ⅱ)求证:面ABE ⊥平面BDE;
(Ⅲ)求该几何体ABECD的体积。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
,AF=1,M是线段EF的中点.![]()
(Ⅰ)求证AM//平面BDE;
(Ⅱ)求二面角A-DF-B的大小;
(Ⅲ)试在线段AC上确定一点P,使得PF与BC所成的角是60°.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知两个正方形ABCD 和DCEF不在同一平面内,且平面ABCD ⊥平面DCEF,M,N分别为AB,DF的中点。![]()
(1)求直线MN与平面ABCD所成角的正弦值;
(2)求异面直线ME与BN所成角的余弦值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com