【题目】已知椭圆
的离心率为
,点
在椭圆
上
(
)求
的方程.
(
)设直线
不经过
点且与
相交于
、
两点,若直线
与直线
的斜率的和为
,
证明:
过定点.
【答案】(
)
.(
)见解析.
【解析】试题分析:(1)由题意
,
,结合
,可得椭圆方程
.
(2)设直线方程为
,与椭圆方程联立消去
并整理得,
,由韦达定理可知,
,
,结合
可得
,由题可得
,故直线
的方程为
,可得直线过定点
.
试题解析:(
)根据题意得:
,
,
又
,
∴
,
,
,
故椭圆
的方程为
.
(
)证明:当直线
的斜率存在时,设直线方程为
,
联立直线方程与椭圆方程得
,消去
,
化简得
,
设
,
,
则由韦达定理可知,
,
,
∵
,
,且
,
∴![]()
![]()
,
化简得:
,
即
,
∵直线
不过
,
∴
,
则
,
∴直线
的方程为
,
即
,直线过定点
,
当直线
的斜率不存在时,设
,
,
由斜率之和为
,得
,
解得
,此时
方程为
,
此时直线过点
,
综上所述,直线
过定点
.
科目:高中数学 来源: 题型:
【题目】长方形
中,
,
是
中点(图1).将△
沿
折起,使得
(图2)在图2中:
![]()
(1)求证:平面
平面
;
(2)在线段
上是否存点
,使得二面角
为大小为
,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.
(1)求
;
(2)除H以外,直线MH与C是否有其它公共点?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2-ax-xln x,且f(x)≥0.
(1)求a;
(2)证明:f(x)存在唯一的极大值点x0,且e-2<f(x0)<2-2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017·成都一诊)已知椭圆
的右焦点为F,设直线l:x=5与x轴的交点为E,过点F且斜率为k的直线l1与椭圆交于A,B两点,M为线段EF的中点.
(1)若直线l1的倾斜角为
,求△ABM的面积S的值;
(2)过点B作直线BN⊥l于点N,证明:A,M,N三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是一几何体的平面展开图,其中ABCD为正方形,E,F分别为PA,PD的中点,
在此几何体中,给出下面四个结论:
①直线BE与直线CF异面; ②直线BE与直线AF异面;
③直线EF∥平面PBC; ④平面BCE⊥平面PAD.
其中正确的有( )
![]()
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点
与短轴两个端点的连线互相垂直.
(1)求椭圆
的标准方程;
(2)设点
为椭圆
的上一点,过原点
且垂直于
的直线与直线
交于点
,求
面积
的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com