【题目】正方形ABCD和正方形ABEF的边长都是1,并且平面ABCD⊥平面ABEF,点M在AC上移动,点N在BF上移动.若|CM|=|BN|=a(0<a<
).
(1)求MN的长度;
(2)当a为何值时,MN的长度最短.
【答案】(1)
(2)
【解析】试题分析; (1)建立坐标系,求出
,即可求出
的长;
(2)利用配方法,即可当
时
的长度最短.
试题解析;因为平面ABCD⊥平面ABEF,且交线为AB,BE⊥AB,所以BE⊥平面ABCD,所以BA,BC,BE两两垂直.取B为坐标原点,BA,BE,BC所在直线分别为x轴、y轴和z轴,建立如图所示的空间直角坐标系.
![]()
因为|BC|=1,|CM|=a,点M在坐标平面xBz上且在正方形ABCD的对角线AC上,
所以点M
.
因为点N在坐标平面xBy上且在正方形ABEF的对角线BF上,|BN|=a,所以点N
.
(1)由空间两点间的距离公式,得
|MN|=![]()
=
,即MN的长度为
.
(2)由(1)得|MN|=
=
,当a=
(满足0<a<
)时,
取得最小值
,即MN的长度最短,最短为
.
科目:高中数学 来源: 题型:
【题目】已知椭圆![]()
的左右焦点分别为
,短轴两个端点为
,且四边形
是边长为2的正方形.
(1)求椭圆
的方程;
(2)设
是椭圆
上一点,
为椭圆长轴上一点,求
的最大值与最小值;
(3)设
是椭圆
外的动点,满足
,点
是线段
与该椭圆的交点,点
在线段
上,并且满足
,
,求点
的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
(t+1)lnx,,其中t∈R.
(1)若t=1,求证:当x>1时,f(x)>0成立;
(2)若t>
,判断函数g(x)=x[f(x)+t+1]的零点的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
.(14分)
(1)此方程表示圆,求m的取值范围;
(2)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且
(O为坐标原点),求m的值;
(3)在(2)的条件下,求以
为直径的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为定义在R上的奇函数,当
时,
为二次函数,且满足
,
在
上的两个零点为
和
.
(1)求函数
在R上的解析式;
(2)作出
的图象,并根据图象讨论关于
的方程![]()
根的个数.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空气质量按照空气质量指数大小分为七档(五级),相对应空气质量的七个类别,指数越大,说明污染的情况越严重,对人体危害越大.
指数 | 级别 | 类别 | 户外活动建议 |
| Ⅰ | 优 | 可正常活动 |
| Ⅱ | 良 | |
| Ⅲ | 轻微污染 | 易感人群症状有轻度加剧,健康人群出现刺激症状,心脏病和呼吸系统疾病患者应减少体积消耗和户外活动. |
| 轻度污染 | ||
| Ⅳ | 中度污染 | 心脏病和肺病患者症状显著加剧,运动耐受力降低,健康人群中普遍出现症状,老年人和心脏病、肺病患者应减少体力活动. |
| 中度重污染 | ||
| Ⅴ | 重污染 | 健康人运动耐受力降低,由明显强烈症状,提前出现某些疾病,老年人和病人应当留在室内,避免体力消耗,一般人群应尽量减少户外活动. |
现统计邵阳市市区2016年1月至11月连续60天的空气质量指数,制成如图所示的频率分布直方图.
![]()
(1)求这60天中属轻度污染的天数;
(2)求这60天空气质量指数的平均值;
(3)一般地,当空气质量为轻度污染或轻度污染以上时才会出现雾霾天气,且此时出现雾霾天气的概率为
,请根据统计数据,求在未来2天里,邵阳市恰有1天出现雾霾天气的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法:
①将一组数据中的每个数据都加上或减去同一个常数后,均值与方差都不变;
②设有一个回归方程
,变量x增加一个单位时,y平均增加3个单位;
③线性回归方程
必经过点
;
④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说现有100人吸烟,那么其中有99人患肺病.其中错误的个数是( )
A. 0
B. 1
C. 2
D. 3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com