【题目】在
中,角
的对边分别为
,已知
且
.
(1)求角
;
(2)求
的面积的最大值.
【答案】(1)
(2)2
【解析】
(1)根据二倍角公式得到4cos2C-4cosC+1=0即(2cosC-1)2=0,进而得到角C的值;(2)根据余弦定理得到a2+b2-8=ab,根据重要不等式得到ab≤8,代入面积公式即可.
(1)由8sin2
+4sin2C=9得:4(1-cos(A+B))+4sin2C=9
整理得:4cos2C-4cosC+1=0即(2cosC-1)2=0,
所以,cosC=
,
C =
;
(2)由余弦定理可得:cosC=
=
,又c=2
,
所以,a2+b2-8=ab
又a2+b2≥2ab,得到不等式ab≤8,当且仅当a=b时等号成立,
所以△ABC的面积:S△ABC=
absinC=
ab≤2
,
△ABC的面积的最大值为2
。
科目:高中数学 来源: 题型:
【题目】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个小组中随机抽取10名学生参加问卷调查.各组人数统计如下:
![]()
(1)从参加问卷调查的10名学生中随机抽取两名,求这两名学生来自同一个小组的概率;
(2)在参加问卷调查的10名学生中,从来自甲、丙两个小组的学生中随机抽取两名,用
表示抽得甲组学生的人数,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题
:关于
的不等式
无解;命题
:指数函数
是增函数.
(1)若命题
为真命题,求
的取值范围;
(2)若满足
为假命题
为真命题的实数
取值范围是集合
,集合
,且
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
的方程为
,抛物线
:
的焦点为
,点
是抛物线
上到直线
距离最小的点.
(1)求点
的坐标;
(2)若直线
与抛物线
交于
两点,
为
中点,且
,求直线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com