直线
与椭圆
交于
,
两点,已知![]()
,![]()
,若
且椭圆的离心率
,又椭圆经过点
,
为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线
过椭圆的焦点
(
为半焦距),求直线
的斜率
的值;
科目:高中数学 来源: 题型:解答题
已知直线l:y=kx+2(k为常数)过椭圆
+
=1(a>b>0)的上顶点B和左焦点F,直线l被圆x2+y2=4截得的弦长为d.
(1)若d=2
,求k的值;
(2)若d≥
,求椭圆离心率e的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
的一个焦点为
且过点
.![]()
(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E的上下顶点分别为A1,A2,P是椭圆上异于A1,A2的任一点,直线PA1,PA2分别交
轴于点N,M,若直线OT与过点M,N的圆G相切,切点为T.
证明:线段OT的长为定值,并求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
,左、右两个焦点分别为
、
,上顶点
,
为正三角形且周长为6.
(1)求椭圆
的标准方程及离心率;
(2)
为坐标原点,
是直线
上的一个动点,求
的最小值,并求出此时点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
=1(a>b>0)的离心率为
,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(
+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D. ![]()
(1)求椭圆和双曲线的标准方程;
(2)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1;
(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆
的左、右焦点分别为
,上顶点为
,离心率为
, 在
轴负半轴上有一点
,且![]()
![]()
(1)若过
三点的圆 恰好与直线
相切,求椭圆C的方程;
(2)在(1)的条件下,过右焦点
作斜率为
的直线
与椭圆C交于
两点,在
轴上是否存在点
,使得以
为邻边的平行四边形是菱形,如果存在,求出
的取值范围;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中心在原点,焦点在坐标轴上的椭圆
,它的离心率为
,一个焦点和抛物线
的焦点重合,过直线
上一点
引椭圆
的两条切线,切点分别是
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若在椭圆
上的点
处的椭圆的切线方程是
. 求证:直线
恒过定点
;并出求定点
的坐标.
(Ⅲ)是否存在实数
,使得
恒成立?(点
为直线
恒过的定点)若存在,求出
的值;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,抛物线
与x轴交于A、B两点,与y轴交于点C,连接BC、AC。![]()
(1)求AB和OC的长;
(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合)。过点E作直线l平行BC,交AC于点D。设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;
(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留
)。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com