【题目】已知点
是椭圆
的右焦点,点
,
分别是
轴,
轴上的动点,且满足
.若点
满足
(
为坐标原点).
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)设过点
任作一直线与点
的轨迹交于
,
两点,直线
,
与直线
分别交于点
,
,试判断以线段
为直径的圆是否经过点
?请说明理由.
【答案】(1)
(2)经过
【解析】
(Ⅰ)由椭圆的方程,得到右焦点
的坐标,根据向量的数量积的运算公式,求得
和
,代入即可求解抛物线的标准方程;
(Ⅱ)解法一:设直线
的方程为
,得到
,
,联立方程组,求得
,利用向量的数量积的运算
,即可得到证明;
解法二:①当
时,利用向量的数量积得到
;②当
不垂直
轴时,设直线
的方程为
,联立方程组,求解
,进而证得
,即可得到证明.
(Ⅰ)∵椭圆
右焦点
的坐标为
,
∴
.∵
,
∴由
,得
.
设点
的坐标为
,由
,有
,
,代入
,得
.
即点
的轨迹
的方程为
.
(Ⅱ)解法一:设直线
的方程为
,
,
,
则
:
,
:
.
由
得
,同理得
.
∴
,
,则
.
由
得
,∴
.
则
.
因此,以线段
为直径的圆经过点
.
解法二:①当
时,
,
,则
:
,
:
.
由
,得点
的坐标为
,则
,
由
,得点
的坐标为
,则
.
∴
.
②当
不垂直
轴时,设直线
的方程为
,
,
,
同解法一,得
.
由
,得
,∴
.
则
.
因此,以线段
为直径的圆经过点
.
科目:高中数学 来源: 题型:
【题目】已知y=f(x)的导函数f′(x)的图像如图所示,则下列结论正确的是( )
![]()
A.f(x)在(-3,-1)上先增后减B.x=-2是f(x)极小值点
C.f(x)在(-1,1)上是增函数D.x=1是函数f(x)的极大值点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国际象棋比赛中.胜局一得1分,平一局得0.5分,负一局得0分。今有8名选手进行单循环比赛(每两人均赛一局),赛完后、发现各选手的得分均不相同,当按得分由大到小排列好名次后,第四名选手得4.5分,第二名的得分等于最后四名选手得分总和.问前三名选手各得多少分?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018河南豫南九校高三下学期第一次联考】设函数
.
(I)当
时,
恒成立,求
的范围;
(II)若
在
处的切线为
,且方程
恰有两解,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是边长为2的菱形,
,
,平面
平面
,点
为棱
的中点.
![]()
(Ⅰ)在棱
上是否存在一点
,使得
平面
,并说明理由;
(Ⅱ)当二面角
的余弦值为
时,求直线
与平面
所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
(
为参数,实数
),曲线
(
为参数,实数
).在以
为极点,
轴的正半轴为极轴的极坐标系中,射线
与
交于
,
两点,与
交于
,
两点.当
时,
;当
,
.
(1)求
和
的值.
(2)求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在
上的函数
,若满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的上界
(1)设
,判断
在
上是否是有界函数,若是,说明理由,并写出
所有上界的值的集合;若不是,也请说明理由.
(2)若函数
在
上是以
为上界的有界函数,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①命题“若
,则
”的否命题为“若
,则
”;
②“
”是“
”的必要不充分条件;
③
命题“,使得
”的否定是:“
,均有
”;
④命题“若
,则
”的逆否命题为真命题
其中所有正确命题的序号是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com