【题目】如图所示,在棱长为1的正方体
中,点
在
上移动,点
在
上移动,
,连接
.
![]()
(1)证明:对任意
,总有
平面
;
(2)当
为何值时,
的长度最小?
科目:高中数学 来源: 题型:
【题目】如图,椭圆C:
(a>b>0)的离心率为
,其左焦点到点P(2,1)的距离为
.不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.
![]()
(Ⅰ)求椭圆C的方程;
(Ⅱ) 求
ABP的面积取最大时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为响应国家提出的“大众创业,万众创新”的号召,小李同学大学毕业后,决定利用所学专业进行自主创业。经过市场调查,生产某小型电子产品需投入年固定成本为5万元,每年生产
万件,需另投入流动成本为
万元,且
,每件产品售价为10元。经市场分析,生产的产品当年能全部售完。
(1)写出年利润
(万元)关于年产量
(万件)的函数解析式;
(注:年利润=年销售收入-固定成本-流动成本)
(2)年产量为多少万件时,小李在这一产品的生产中所获利润最大?最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学随机选取了
名男生,将他们的身高作为样本进行统计,得到如图所示的频率分布直方图.观察图中数据,完成下列问题.
(Ⅰ)求
的值及样本中男生身高在
(单位:
)的人数;
(Ⅱ)假设同一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生的平均身高;
(Ⅲ)在样本中,从身高在
和
(单位:
)内的男生中任选两人,求这两人的身高都不低于
的概率.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,过右焦点作垂直于椭圆长轴的直线交椭圆于
两点,且
为坐标原点.
(1)求椭圆
的方程;
(2) 设直线
与椭圆
相交于
两点,若
.
①求
的值;
②求
的面积
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
+
=1(a>b>0)的离心率为
,直线l:x+2y=4与椭圆有且只有一个交点T.
(I)求椭圆C的方程和点T的坐标;
(Ⅱ)O为坐标原点,与OT平行的直线l′与椭圆C交于不同的两点A,B,直线l′与直线l交于点P,试判断
是否为定值,若是请求出定值,若不是请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的顶点在原点,焦点在x轴的正半轴上,过抛物线的焦点且斜率为1的直线与抛物线交于A、B两点,若
.
(1)求抛物线的方程;
(2)若AB的中垂线交抛物线于C、D两点,求过A、B、C、D四点的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着手机的普及,大学生迷恋手机的现象非常严重.为了调查双休日大学生使用手机的时间,某机构采用不记名方式随机调查了使用手机时间不超过10小时的50名大学生,将50人使用手机的时间分成5组:
,
,
,
,
分别加以统计,得到下表,根据数据完成下列问题:
使用时间/时 |
|
|
|
|
|
大学生/人 | 5 | 10 | 15 | 12 | 8 |
![]()
(1)完成频率分布直方图,并根据频率分布直方图估计大学生使用手机时间的中位数(保留小数点后两位);
(2)用分层抽样的方法从使用手机时间在区间
,
,
的大学生中抽取6人,再从这6人中随机抽取2人,求这2人取自不同使用时间区间的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com