【题目】已知二次函数
.
(1)若
是
的两个不同零点,是否存在实数
,使
成立?若存在,求
的值;若不存在,请说明理由.
(2)设
,函数
,存在
个零点.
(i)求
的取值范围;
(ii)设
分别是这
个零点中的最小值与最大值,求
的最大值.
【答案】(1) 不存在.理由见解析;
(2) (i)
(ii) ![]()
【解析】
(1) .假设存在实数
满足题意,由韦达定理可得:![]()
,解得
,又
,即
,综合可得假设不成立;
(2) (i)作出函数
的图象,观察图像即可求出
的取值范围;
(ii)设直线
与此图象的最左边和最右边的交点分别为
.即
,因为![]()
,代入运算可得解.
解:(1)依题意可知,
.假设存在实数
,使
成立.
因为
有两个不同零点,.
所以
,解得
.
由韦达定理得![]()
所以![]()
![]()
解得
,而
,故不存在.
(2)因为
,设
,则
,
当
时,
;当
时,
.
(i)作出函数
的图象,如图所示,所以
.
(ii)设直线
与此图象的最左边和最右边的交点分别为
.
由
,得![]()
由
,得![]()
所以![]()
因为![]()
,
所以当
时,
取得最大值
.
故
的最大值为
.
![]()
科目:高中数学 来源: 题型:
【题目】某地电影院为了了解当地影迷对快要上映的一部电影的票价的看法,进行了一次调研,得到了票价x(单位:元)与渴望观影人数y(单位:万人)的结果如下表:
x(单位:元) | 30 | 40 | 50 | 60 |
y(单位:万人) | 4.5 | 4 | 3 | 2.5 |
(1)若y与x具有较强的相关关系,试分析y与x之间是正相关还是负相关;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)根据(2)中求出的线性回归方程,预测票价定为多少元时,能获得最大票房收入.
参考公式:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了研究学生的数学核素养与抽象(能力指标
)、推理(能力指标
)、建模(能力指标
)的相关性,并将它们各自量化为1、2、3三个等级,再用综合指标
的值评定学生的数学核心素养,若
,则数学核心素养为一级;若
,则数学核心素养为二级;若
,则数学核心素养为三级,为了了解某校学生的数学核素养,调查人员随机访问了某校10名学生,得到如下:
![]()
(1)在这10名学生中任取两人,求这两人的建模能力指标相同的概率;
(2)从数学核心素养等级是一级的学生中任取一人,其综合指标为
,从数学核心素养等级不是一级的学生中任取一人,其综合指标为
,记随机变量
,求随机变量
的分布列及其数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
=(2sinx,-1),
,函数f(x)=
.
(1)求函数f(x)的对称中心;
(2)设△ABC的内角A,B,C所对的边为a,b,c,且a2=bc,求f(A)的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】向50名学生调查对A、B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成;另外,对A、B都不赞成的学生数比对A、B都赞成的学生数的三分之一多1人. 问对A、B都赞成的学生有____________人
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数
在某一个周期内的图象时,列表并填入了部分数据,如下表:
| 0 |
|
|
|
|
|
|
| |||
| 0 | 2 | 0 | 0 |
(1)请将上表数据补充完整;函数
的解析式为
= (直接写出结果即可);
(2)求函数
的单调递增区间;
(3)求函数
在区间
上的最大值和最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com