【题目】已知椭圆
的离心率为
,点
在椭圆
上.
(1)求椭圆
的方程;
(2)设动直线
与椭圆
有且仅有一个公共点,判断是否存在以原点
为圆心的圆,满足此圆与
相交两点
,
(两点均不在坐标轴上),且使得直线
,
的斜率之积为定值?若存在,求此圆的方程与定值;若不存在,请说明理由.
【答案】(1)
,(2)存在符合条件的圆,且此圆的方程为
,定值为![]()
【解析】
(1)利用离心率和点在椭圆上列出方程,解出
即可
(2)当直线
的斜率存在时,设
的方程为
,先将直线的方程与椭圆的方程联立,利用直线
与椭圆有且仅有一个公共点,推出
,然后通过直线与圆的方程联立,
设
,
,结合韦达定理,求解直线的斜率乘积,推出
为定值,然后再验证直线
的斜率不存在时也满足即可
(1)由题意得:
,![]()
又因为点
在椭圆
上
所以![]()
解得![]()
所以椭圆的标准方程为:![]()
(2)结论:存在符合条件的圆,且此圆的方程为![]()
证明如下:
假设存在符合条件的圆,且设此圆的方程为:![]()
当直线
的斜率存在时,设
的方程为![]()
由方程组
得![]()
因为直线
与椭圆有且仅有一个公共点
所以![]()
即![]()
由方程组
得![]()
则![]()
设
,
,则![]()
设直线
,
的斜率分别为
,![]()
所以![]()
![]()
将
代入上式得
![]()
要使得
为定值,则
,即![]()
所以当圆的方程为
时,
圆与
的交点
,
满足
为定值![]()
当直线
的斜率不存在时,由题意知
的方程为![]()
此时圆与
的交点
,
也满足
为定值![]()
综上:当圆的方程为
时,
圆与
的交点
,
满足
为定值![]()
科目:高中数学 来源: 题型:
【题目】现有2位男生,3位女生去参加一个联欢活动,该活动有甲、乙两个项目可供参加者选择.
(Ⅰ)为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个项目联欢,掷出点数为1或2的人去参加甲项目联欢,掷出点数大于2的人去参加乙项目联欢.求这5人中恰好有3人去参加甲项目联欢的概率;
(Ⅱ)若从这5人中随机选派3人去参加甲项目联欢,设
表示这3个人中女生的人数,求随机变量
的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】条形码是由一组规则排列的条、空及其对应的代码组成,用来表示一定的信息,我们通常见的条形码是“
”通用代码,它是由从左到右排列的
个数字(用
,
,…,
表示)组成,这些数字分别表示前缀部分、制造厂代码、商品代码和校验码,其中
是校验码,用来校验前
个数字代码的正确性.图(1)是计算第
位校验码的程序框图,框图中符号
表示不超过
的最大整数(例如
).现有一条形码如图(2)所示(
),其中第
个数被污损,那么这个被污损数字
是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产
、
两种产品,生产每
产品所需的劳动力和煤、电消耗如下表:
产品品种 | 劳动力(个) | 煤 | 电 |
|
|
|
|
|
|
|
|
已知生产
产品的利润是
万元,生产
产品的利润是
万元.现因条件限制,企业仅有劳动力
个,煤
,并且供电局只能供电
,则企业生产
、
两种产品各多少吨,才能获得最大利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上
件产品作为样本算出他们的重量(单位:克)重量的分组区间为
,
,……
,由此得到样本的频率分布直方图,如图所示.
![]()
(1)根据频率分布直方图,求重量超过
克的产品数量.
(2)在上述抽取的
件产品中任取
件,设
为重量超过
克的产品数量,求
的分布列.
(3)从流水线上任取
件产品,求恰有
件产品合格的重量超过
克的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求
和
的直角坐标方程;
(2)已知直线
与
轴交于点
,且与曲线
交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表是我省某地区2012年至2018年农村居民家庭年纯收入
(单位:万元)的数据如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
年纯收入 | 2 | 3 | 3.5 | 4 | 4.5 | 5 | 6 |
(1)求
关于
的线性回归方程;
(2)利用(1)中的回归方程,分析2012年至2018年该地区农村居民家庭年纯收入的变化情况,并预测该地区2019年农村居民家庭年纯收入(结果精确到0.1)。
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,
。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程是
,曲线
的参数方程为:
(
为参数).
(1)求曲线
,
的直角坐标方程;
(2)设曲线
,
交于点
,
,已知点
,求
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com